首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5651篇
  免费   540篇
  国内免费   1119篇
化学   4624篇
晶体学   44篇
力学   115篇
综合类   34篇
数学   68篇
物理学   679篇
综合类   1746篇
  2024年   36篇
  2023年   104篇
  2022年   243篇
  2021年   267篇
  2020年   343篇
  2019年   217篇
  2018年   237篇
  2017年   208篇
  2016年   251篇
  2015年   254篇
  2014年   298篇
  2013年   348篇
  2012年   338篇
  2011年   383篇
  2010年   281篇
  2009年   314篇
  2008年   294篇
  2007年   389篇
  2006年   360篇
  2005年   306篇
  2004年   289篇
  2003年   241篇
  2002年   177篇
  2001年   159篇
  2000年   146篇
  1999年   116篇
  1998年   102篇
  1997年   93篇
  1996年   91篇
  1995年   68篇
  1994年   85篇
  1993年   54篇
  1992年   55篇
  1991年   27篇
  1990年   34篇
  1989年   30篇
  1988年   17篇
  1987年   14篇
  1986年   14篇
  1985年   9篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
排序方式: 共有7310条查询结果,搜索用时 15 毫秒
101.
For the first time, the adaptability of the C?C double bond as a versatile precursor for the postsynthetic modification (PSM) of microporous materials was extensively investigated and evaluated. Therefore, an olefin‐tagged 4,4′‐bipyridine linker was synthesized and successfully introduced as pillar linker within a 9,10‐triptycenedicarboxylate (TDC) zinc paddle‐wheel metal–organic framework (MOF) through microwave‐assisted synthesis. Different reactions, predominately used in organic chemistry, were tested, leading to the development of new postsynthetic reactions for the functionalization of solid materials. The postsynthetic oxidation of the olefin side groups applying osmium tetroxide (OsO4) as a catalyst led to the formation of a microporous material with free vicinal diol functionalities. The epoxidation with dimethyldioxirane (DMDO) enabled the synthesis of epoxy‐functionalized MOFs. In addition to that, reaction procedures for a postsynthetic hydroboration with borane dimethyl sulfide as well as a photoinduced thiol–ene click reaction with ethyl mercaptan were developed. For all of these PSMs, yields of more than 90 % were obtained, entirely maintaining the crystallinity of the MOFs. Since the direct introduction of the corresponding groups by means of pre‐synthetic approaches is hardly possible, these new PSMs are useful tools for the functionalization of porous solids towards applications such as selective adsorption, separation, and catalysis.  相似文献   
102.
Four novel terminal modified antisense oligonucleotides (ODNs) were designed, synthesized and tested for their anti-influenza virus activity. Initial biological studies indicated that lipophilic and rimantadin emodificated Flutide exhibited more potent anti-H1N1 activity than Flutide. Among them, lipophilic modificated ODN (Flutide-I) showed the most antiviral activity. The EC50 value of Flutide-I for inhibiting H1N1 induced cytopathic effect (CPE) and H1N1 RNA were respectively (0.26 ± 0.16) μM and (0.11 ± 0.03) μM. The cytotoxicity of these compounds has also been assessed. No significant cytotoxicities were found for any of these compounds with the concentrations up to 20 μM.  相似文献   
103.
104.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   
105.
A human brain is composed of a large number of interconnected neurons forming a neural network. To study the functional mechanism of the neural network, it is necessary to record the activity of individual neurons over a large area simultaneously. Brain-computer interface (BCI) refers to the connection established between the human/animal brain and computers/other electronic devices, which enables direct interaction between the brain and external devices. It plays an important role in understanding, protecting, and simulating the brain, especially in helping patients with neurological disorders to restore their impaired motor and sensory functions. Neural electrodes are electrophysiological devices that form the core of BCI, which convert neuronal electrical signals (carried by ions) into general electrical signals (carried by electrons). They can record or interfere with the state of neural activity. The Utah Electrode Array (UEA) designed by the University of Utah is a mainstream neural electrode fabricated by bulk micromachining. Its unique three-dimensional needle-like structure enables each electrode to obtain high spatiotemporal resolution and good insulation between each other. After implantation, the tip of each electrode affects only a small group of neurons around it even allowing to record the action potential of a single neuron. The availability of a large number of electrodes, high quality of signals, and long service life has made UEA the first choice for collecting neuronal signals. Moreover, UEA is the only implantable neural electrode that can record signals in the human cerebral cortex. This article mainly serves as an introduction to the construction, manufacturing process, and functioning of UEA, with a focus on the research progress in fabricating high-density electrode arrays, wireless neural interfaces, and optrode arrays using silicon, glass, and metal as that material of construction. We also discuss the surface modification techniques that can be used to reduce the electrode impedance, minimize the rejection by brain tissue, and improve the corrosion resistance of the electrode. In addition, we summarize the clinical applications where patients can control external devices and get sensory feedback by implanting UEA. Furthermore, we discuss the challenges faced by existing electrodes such as the difficulty in increasing electrode density, poor response of integrated wireless neural interface, and the problems of biocompatibility. To achieve stability and durability of the electrode, advancements in both material science and manufacturing technology are required. We hope that this review can broaden the scope of ideas for the development of UEA. The realization of a fully implantable neural microsystem can contribute to an improved understanding of the functional mechanisms of the neural network and treatment of neurological diseases.  相似文献   
106.
The physicochemical properties of polymers are mainly dependent on the nature of polymer backbone and/or pendant groups linked to the main chain. Therefore, synthetic modification of these functional groups via post functionalization is an important approach for obtaining novel polymeric systems with improved properties and targeted applications. In this context, the synthetic modifications of nitrile group in polymers into various useful functionalities have received considerable attention and several interesting applications of the resulting polymers have been identified. The majority of the studies are based on Polyacrylonitrile (PAN), and some isolated examples of nitrile functionalization in copolymers such as Poly (Styrene-co-Acrylonitrile) (SAN), Poly (Acrylonitrile-co-Butadiene-co-Styrene (ABS) and Nitrile Rubber (NBR) are available. These synthetic modifications are mainly accomplished by the reactions such as Nucleophilic addition, cycloaddition, reduction, and hydrolysis using various reagents. These studies describing the post-polymerization modifications of nitrile group in polymers reported during the last three decades are covered in this review.  相似文献   
107.
108.
Perovskite solar cells (PSCs) are a promising photovoltaic technology for stretchable applications because of their flexible, light‐weight, and low‐cost characteristics. However, the fragility of crystals and poor crystallinity of perovskite on stretchable substrates results in performance loss. In fact, grain boundary defects are the “Achilles’ heel” of optoelectronic and mechanical stability. We incorporate a self‐healing polyurethane (s‐PU) with dynamic oxime–carbamate bonds as a scaffold into the perovskite films, which simultaneously enhances crystallinity and passivates the grain boundary of the perovskite films. The stretchable PSCs with s‐PU deliver a stabilized efficiency of 19.15 % with negligible hysteresis, which is comparable to the performance on rigid substrates. The PSCs can maintain over 90 % of their initial efficiency after 3000 hours in air because of their self‐encapsulating structure. Importantly, the self‐healing function of the s‐PU scaffold was verified in situ. The s‐PU can release mechanical stress and repair cracks at the grain boundary on multiple levels. The devices recover 88 % of their original efficiency after 1000 cycles at 20 % stretch. We believe that this ingenious growth strategy for crystalline semiconductors will facilitate development of flexible and stretchable electronics.  相似文献   
109.
Design of stable adsorbents for selective gold recovery with large capacity and fast adsorption kinetics is of great challenge, but significant for the economy and the environment. Herein, we show the design and preparation of an irreversible amide‐linked covalent organic framework (COF) JNU‐1 via a building block exchange strategy for efficient recovery of gold. JNU‐1 was synthesized through the exchange of 4,4′‐biphenyldicarboxaldehyde (BA) in mother COF TzBA consisting of 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)trianiline (Tz) and BA with terephthaloyl chloride. The irreversible amide linked JNU‐1 gave good stability, unprecedented fast kinetics, excellent selectivity and outstanding adsorption capacity for gold recovery. X‐ray photoelectron spectroscopy along with thermodynamic study and quantum mechanics calculation reveals that the excellent performance of JNU‐1 for gold recovery results from the formation of hydrogen bonds C(N)?H???Cl and coordinate interaction of O and Au. The rational design of irreversible bonds as both inherent linkage and functional groups in COFs is a promising way to prepare stable COFs for diverse applications.  相似文献   
110.
针对氧化石墨(GO)用化学方法还原为石墨烯纳米片(GN)后极易再配列为类似石墨结构层状物的问题,本工作在GO还原过程中用聚苯胺(PANI)修饰石墨烯纳米片(P-GN),发现即使干燥后,P-GN仍可在N,N-二甲基甲酰胺(DMF)中呈分散状态稳定存在.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号