首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24463篇
  免费   4944篇
  国内免费   1516篇
化学   7778篇
晶体学   356篇
力学   515篇
综合类   78篇
数学   97篇
物理学   17607篇
综合类   4492篇
  2024年   35篇
  2023年   139篇
  2022年   384篇
  2021年   476篇
  2020年   519篇
  2019年   397篇
  2018年   482篇
  2017年   644篇
  2016年   844篇
  2015年   918篇
  2014年   1287篇
  2013年   1540篇
  2012年   1324篇
  2011年   1747篇
  2010年   1269篇
  2009年   1567篇
  2008年   1573篇
  2007年   1975篇
  2006年   1774篇
  2005年   1386篇
  2004年   1378篇
  2003年   1145篇
  2002年   1067篇
  2001年   922篇
  2000年   918篇
  1999年   856篇
  1998年   679篇
  1997年   646篇
  1996年   569篇
  1995年   421篇
  1994年   376篇
  1993年   331篇
  1992年   299篇
  1991年   224篇
  1990年   204篇
  1989年   162篇
  1988年   119篇
  1987年   107篇
  1986年   61篇
  1985年   34篇
  1984年   33篇
  1983年   9篇
  1982年   14篇
  1981年   19篇
  1980年   10篇
  1979年   10篇
  1975年   4篇
  1974年   3篇
  1973年   13篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
利用电化学湿法印章技术在氧化铟锡(ITO)导电玻璃上制备AuPd合金和Au的双组分阵列图案. 采用具有微浮雕图案的琼脂糖印章存储足够多的溶液,并通过控制电沉积的时间来控制图案厚度. 应用场发射扫描电子显微镜(FE-SEM),X射线能谱分析(EDX)和原子力显微镜(AFM)分别对ITO表面上的AuPd合金和Au的形貌和组分进行表征,并通过循环伏安(CV)技术和扫描电化学显微镜(SECM)研究比较了Au和AuPd合金的催化活性. 利用扫描电化学显微镜(SECM)的针尖产生-基底收集(TG-SC)模式和氧化还原竞争(RC)模式,发现Au电极对二茂铁甲醇氧化物(FcMeOH+)电催化还原能力高于AuPd合金电极,而在AuPd合金上催化还原H2O2的能力显著高于Au.  相似文献   
992.
Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties.  相似文献   
993.
The CD spectroscopy of a chiral compound in solution yields an average CD value derived from all of the conformations of a chiral molecule. By contrast, CD spectroscopy of cold chiral molecules in the gas phase distinguishes specific conformers of a chiral molecule, but the weak CD effect has limited the practical application of this technique. Reported herein is the first resonant two‐photon ionization CD spectra of ephedrines in a supersonic jet using circularly polarized laser pulses, which were generated by synchronizing the oscillation of the photoelastic modulator with the laser firing. The spectra exhibited well‐resolved CD bands which were specific for the conformations and vibrational modes of each enantiomer. The CD signs and magnitudes of the jet‐cooled chiral molecules were very sensitive to their conformations and thus offered crucial information for determining the three‐dimensional structures of chiral species, as conducted in combination with quantum chemical calculations.  相似文献   
994.
995.
996.
Real‐time imaging of cell‐surface‐associated proteolytic enzymes is critical to better understand their performances in both physiological and pathological processes. However, most current approaches are limited by their complexity and poor membrane‐anchoring properties. Herein, we have designed and synthesized a unique small‐molecule fluorescent probe, which combines the principles of passive exogenous membrane insertion and Förster resonance energy transfer (FRET) to image cell‐surface‐localized furin‐like convertase activities. The membrane‐associated furin‐like enzymatic cleavage of the peptide probe leads to an increased fluorescence intensity which was mainly localized on the plasma membrane of the furin‐expressed cells. This small‐molecule fluorescent probe may serve as a unique and reliable reporter for real‐time visualization of endogenous cell‐surfaceassociated proteolytic furin‐like enzyme functions in live cells and tissues using one‐photon and two‐photon microscopy.  相似文献   
997.
We have developed a new method for the identification and accurate size characterization of nanoparticles (NPs) in complex media based on capillary electrokinetic (CE) separation coupled to inductively coupled plasma mass spectrometry (ICP‐MS). Through mass scanning and Gaussian fitting of electropherogram peaks, we can obtain multidimensional information on chemical compositions, size distributions, and ionic species of multiple NPs in a single run. The results are more accurate than those obtained by using conventional methods. This method provides a powerful tool for investigating polydisperse NP systems and rapid screening of NP‐containing products.  相似文献   
998.
999.
A reagentless strategy for template‐free patterning of uniformly inert surfaces is suggested. A layer of p‐hydroquinone (HQ) protected by the tert‐butyldimethylsilyl (TBDMS) group is electrografted onto glassy carbon electrodes. Chemoselective activation is performed through electrochemically controlled cleavage of the TBDMS group, which yields the redox‐active surface‐confined quinone moieties. The latter are shown to undergo electrochemically induced Michael addition, which serves for subsequent functionalization of the electrode surface. Patterning of the TBDMS–quinone‐modified surface is accomplished by using selective localized cleavage of the protecting group. State‐of‐the‐art direct‐mode scanning electrochemical microscopy (SECM) patterning fails to yield the anticipated interfacial reaction; however, the electrochemical scanning droplet cell (SDC) is capable of conducting the localized chemoselective reaction. In a small area, dictated by the dimensions of the droplet, electrochemically induced cleavage of the protecting group can be performed locally to give rise to arrays of active quinone spots. Upon deprotection, the redox signals, attributed to the hydroquinone/benzoquinone couple, provide the first direct evidence for chemoselective electrochemical patterning of sensitive functionalities. Subsequent SECM studies of the resulting modified areas demonstrate spatial control of the proposed patterning technique.  相似文献   
1000.
When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi‐cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi‐heme c‐type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode‐grown Geobacter biofilms. The results confirm the presence of an intra‐biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c‐type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (?0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (?0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c‐type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (xy dimensions) in the type of c‐type cytochromes within the biofilm that may affect electron transport to the electrode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号