首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   28篇
  国内免费   26篇
化学   238篇
力学   3篇
数学   3篇
物理学   35篇
综合类   114篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   17篇
  2020年   12篇
  2019年   9篇
  2018年   12篇
  2017年   9篇
  2016年   13篇
  2015年   14篇
  2014年   17篇
  2013年   29篇
  2012年   27篇
  2011年   24篇
  2010年   15篇
  2009年   18篇
  2008年   19篇
  2007年   20篇
  2006年   20篇
  2005年   20篇
  2004年   14篇
  2003年   16篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有393条查询结果,搜索用时 9 毫秒
61.
Platinum nanoparticles (PtNPs) were green synthesized by using chloroplatinic acid (H2PtCl6) as raw material and Nymphaea tetragona (N. tetragona) flower extract as the capping and reducing agents to improve skin health. Size-tunable PtNPs were obtained by volume ratios of the initial H2PtCl6/N. tetragona of 1:1 and 1:4, in which PtNPs prepared by the ratio of 1:1 and 1:4 was defined as L1-PtNPs and L4-PtNPs. Their characterizations were investigated by UV–visible spectroscopy, TEM, XRD and FTIR spectroscopy. TEM image analysis showed the particles were well dispersed with the average particle diameters of L1 and L4-PtNPs were 4.04 ± 1.31 nm and 2.01 ± 0.80 nm, respectively. The synthesized PtNPs showed effective antioxidant property and anti-tyrosinase activity in vitro. And further experiments exclaimed that PtNPs can significantly inhibit tyrosinase activity and UVB-induced melanin biosynthesis in A375 cells. This study also revealed PtNPs can promote collagen I biosynthesis in HFF-1 cells by activating the TGF-β/Smad pathway. This research showed the potential efficacy of PtNPs in the skin field and provided evidence for people to consider applying PtNPs to skin protection.  相似文献   
62.
The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)‐1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen‐based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP‐1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP‐1, liver cancer cells undergo active proliferation, downregulation of E‐cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP‐1. Overall, this study serves to better understand and control the effects of MMP‐induced matrix remodeling.  相似文献   
63.
This review reports recent advances in the versatile application of collagen. Collagen materials have attracted great attention because they exhibit properties required in cosmetic preparations, in the biomedical field, and in the tanning industry leading to leather production. Herein, the structure and application of collagen are discussed in general, and detailed examples are also drawn from scientific literature and practical work. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
64.
Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft’s X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.  相似文献   
65.
我国使用天然染料历史悠久,但随着近代化学工业的发展,出现了合成染料,合成染料以其丰富多彩的色彩和优良的染色牢度而得以广泛应用,天然染料则受到冷落.  相似文献   
66.
罗非鱼鳞胶原蛋白提取工艺研究   总被引:2,自引:0,他引:2  
研究用胃蛋白酶从罗非鱼鳞中提取胶原蛋白的工艺。根据测定水解液中羟脯氨酸(HYP)的含量计算胶原蛋白提取率,采用单因素和正交试验确定胃蛋白酶水解鱼鳞制备胶原蛋白的适宜酶解条件。结果表明,采用底物质量分数7%,胃蛋白酶酶解罗非鱼鳞制备胶原蛋白的适宜温度、pH、加酶量、时间分别为65℃、2.0、2%、2 h。在适宜工艺条件下,胶原蛋白提取率可达94.24%。  相似文献   
67.
The dielectric relaxations of a biopolymer, collagen, have been studied by means of the thermally stimulated current (TSC) technique. To investigate effects of water on TSC spectra, complementary measurements by differential scanning calorimetry (DSC) have been performed. In dehydrated collagen, three spectral bands were recorded in the temperature range of -180-60°C, labelled α, β1, and γ in the order of decreasing temperature. The TSC spectrum of hydrated collagen exhibits a supplementary band labelled β2. By using the fractional polarization method, the γ and β1 modes have been attributed to localized movements of nonpolar (apolar) sequences and polar sequences, respectively. The α mode has been associated with delocalized movements of the collagen macromolecules. Finally the β2 mode has been attributed to reorientations of bound water molecules inside the collagen fibers. © 1995 John Wiley & Sons, Inc.  相似文献   
68.
In vivo microstructures of the affected feet of collagen‐induced arthritic (CIA) mice were examined using a high‐resolution synchrotron radiation (SR) X‐ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six‐week‐old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0–3 according to a clinical scoring for the severity of arthritis. An X‐ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge‐coupled‐device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7 µm. These high‐resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X‐ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings.  相似文献   
69.
Chronic wounds, such as venous, pressure, and diabetic ulcers, are difficult to heal and represent a rising social and economical problem. Compared to acute wounds, non-healing wounds contain elevated levels of neutrophil elastase, pro-inflammatory cytokines (IL-1β, IL-6, IL-8), and matrix metalloproteases (MMP-2, MMP-9, MMP-13) as well as free radicals. Their overproduction perpetuates the inflammatory phase resulting in severe tissue damage and degradation of growth factors. Consequently, wound closure is prevented and the wound remains non-healing for month or even years. The increasing numbers of patients suffering from wounds that fail to heal are a significant challenge for health care professionals. Wound dressings play an important role in the entire management of these wounds. New materials and treatment strategies are needed to improve wound care. Recent advances in the field of biomaterials and their medical applications indicate the significance and potential of various natural polymers in the development of novel classes of wound dressings. Native polymers are an ideal source for bio-active wound dressings because of their availability and biocompatibility. Hence, several studies have been conducted to explore the influence of wound dressings consisting of collagen, oxidized regenerated cellulose, bacterial cellulose, chitosan, or alginate on the destructive milieu in chronic wounds.  相似文献   
70.
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号