首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8283篇
  免费   1449篇
  国内免费   786篇
化学   3718篇
晶体学   43篇
力学   312篇
综合类   39篇
数学   141篇
物理学   2930篇
综合类   3335篇
  2024年   29篇
  2023年   88篇
  2022年   196篇
  2021年   242篇
  2020年   293篇
  2019年   242篇
  2018年   203篇
  2017年   261篇
  2016年   357篇
  2015年   355篇
  2014年   531篇
  2013年   557篇
  2012年   546篇
  2011年   582篇
  2010年   438篇
  2009年   477篇
  2008年   483篇
  2007年   539篇
  2006年   473篇
  2005年   439篇
  2004年   422篇
  2003年   374篇
  2002年   316篇
  2001年   258篇
  2000年   254篇
  1999年   243篇
  1998年   193篇
  1997年   176篇
  1996年   156篇
  1995年   125篇
  1994年   123篇
  1993年   95篇
  1992年   88篇
  1991年   68篇
  1990年   62篇
  1989年   49篇
  1988年   48篇
  1987年   28篇
  1986年   26篇
  1985年   8篇
  1984年   12篇
  1982年   13篇
  1981年   8篇
  1980年   10篇
  1979年   9篇
  1977年   4篇
  1976年   6篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
对线性系统模态控制及其时滞补偿进行研究。模态控制分控制全部模态和控制有限模态两种情况 ,时滞补偿采用移相补偿。最后结合算例对两种控制模态下的控制效果和控制有限模态时的时滞补偿进行了数值计算和结果对比  相似文献   
992.
聚能射流侵彻的一种耦合算法   总被引:3,自引:0,他引:3  
介绍了一种能有效模拟聚能射流侵彻过程的计算方法,即二维数值解和解析解相耦合的方法。实际应用表明,此方法计算结果准确可靠,经济省时,其软件是聚能装药优化设计的实用工具。  相似文献   
993.
A new crystal of a charge‐transfer (CT) complex was prepared through supramolecular assembly and it has unique two‐dimensional (2D) morphology. The CT nature of the ground and excited states of this new Bpe‐TCNB cocrystal (BTC) were confirmed by electron spin resonance measurements, spectroscopic studies, and theoretical calculations, thus providing a comprehensive understanding of the CT interactions in organic donor–acceptor systems. And the lowest CT1 excitons are responsible for the efficient photoluminescence (ΦPL=19 %), which can actively propagate in individual 2D BTCs without anisotropy, thus implying that the optical waveguide property of the crystal is not related to the molecular stacking structure. This unique 2D CT cocrystal exhibits potential for use in functional photonic devices in the next‐generation optoelectronic communications.  相似文献   
994.
We present a new approach for determining the strength of the dipolar solute‐induced reaction field, along with the ground‐ and excited‐state electrostatic dipole moments and polarizability of a solvated chromophore, using exclusively one‐photon and two‐photon absorption measurements. We verify the approach on two benchmark chromophores N,N‐dimethyl‐6‐propionyl‐2‐naphthylamine (prodan) and coumarin 153 (C153) in a series of toluene/dimethyl sulfoxide (DMSO) mixtures and find that the experimental values show good quantitative agreement with literature and our quantum‐chemical calculations. Our results indicate that the reaction field varies in a surprisingly broad range, 0–107 V cm?1, and that at close proximity, on the order of the chromophore radius, the effective dielectric constant of the solute–solvent system displays a unique functional dependence on the bulk dielectric constant, offering new insight into the close‐range molecular interaction.  相似文献   
995.
The photoluminescence spectra of a series of 5‐substituted pyridyl‐1,2,3‐triazolato PtII homoleptic complexes show weak emission tunability (ranging from λ=397–408 nm) in dilute (10?6 M ) ethanolic solutions at the monomer level and strong tunability in concentrated solutions (10?4 M ) and thin films (ranging from λ=487–625 nm) from dimeric excited states (excimers). The results of density functional calculations (PBE0) attribute this “turn‐on” sensitivity and intensity in the excimer to strong Pt–Pt metallophilic interactions and a change in the excited‐state character from singlet metal‐to‐ligand charge transfer (1MLCT) to singlet metal‐metal‐to‐ligand charge transfer (1MMLCT) emissions in agreement with lifetime measurements.  相似文献   
996.
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.  相似文献   
997.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   
998.
The photophysics of bis(4,4′‐di‐tert‐butyl‐2,2′‐bipyridine‐κ2N,N′)[2‐(4‐carboxyphenyl)‐4,5‐bis(p‐tolylimino‐κN)imidazolato]ruthenium(II) hexafluorophosphate is investigated, both in solution and attached to a nanocrystalline TiO2 film. The studied substitution pattern of the 4H‐imidazole ligand is observed to block a photoinduced structural reorganization pathway within the 4H‐imidazole ligand that has been previously investigated. Protonation at the 4H‐imidazole ring decreases the excited‐state lifetime in solution. When the unprotonated dye is anchored to TiO2, photoinduced electron injection occurs from thermally nonrelaxed triplet metal‐to‐ligand charge transfer (3MLCT) states with a characteristic time constant of 0.5 ps and an injection efficiency of roughly 25 %. Electron injection from the subsequently populated thermalized 3MLCT state of the dye does not take place. The energy of this state seems to be lower than the conduction band edge of TiO2.  相似文献   
999.
Ruthenium polypyridine‐type complexes are extensively used sensitizers to convert solar energy into chemical and/or electrical energy, and they can be tailored through their metal‐to‐ligand charge‐transfer (MLCT) properties. Much work has been directed at harnessing the triplet MLCT state in photoinduced processes, from sophisticated molecular architectures to dye‐sensitized solar cells. In dye‐sensitized solar cells, strong coupling to the semiconductor exploits the high reactivity of the (hot) singlet/triplet MLCT state. In this work, we explore the nature of the 1MLCT states of remotely substituted RuII model complexes by both experimental and theoretical techniques. Two model complexes with electron‐withdrawing (i.e. NO2) and electron‐donating (i.e. NH2) groups were synthesized; these complexes contained a phenylene spacer to serve as a spectroscopic handle and to confirm the contribution of the remote substituent to the 1MLCT transition. [Ru(tpy)2]2+‐based complexes (tpy=2,2′:6′,2′′‐terpyridine) were further desymmetrized by tert‐butyl groups to yield unidirectional 1MLCTs with large transition dipole moments, which are beneficial for related directional charge‐transfer processes. Detailed comparison of experimental spectra (deconvoluted UV/Vis and resonance Raman spectroscopy data) with theoretical calculations based on density functional theory (including vibronic broadening) revealed different properties of the optically active bright 1MLCT states already at the Franck–Condon point.  相似文献   
1000.
A good understanding of gas‐phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium‐cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na ? H]+ ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na ? H]+ ion needs to overcome several relatively high energetic barriers to form [b2 + Na ? H]+ ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na ? H]+ ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na ? H]+ from the [a3 + Na ? H]+ ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号