首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   802篇
  免费   64篇
  国内免费   60篇
化学   344篇
晶体学   4篇
力学   61篇
综合类   12篇
数学   11篇
物理学   108篇
综合类   386篇
  2024年   4篇
  2023年   9篇
  2022年   42篇
  2021年   51篇
  2020年   30篇
  2019年   25篇
  2018年   28篇
  2017年   28篇
  2016年   27篇
  2015年   32篇
  2014年   47篇
  2013年   44篇
  2012年   43篇
  2011年   32篇
  2010年   36篇
  2009年   41篇
  2008年   34篇
  2007年   46篇
  2006年   42篇
  2005年   42篇
  2004年   36篇
  2003年   32篇
  2002年   39篇
  2001年   21篇
  2000年   25篇
  1999年   12篇
  1998年   10篇
  1997年   15篇
  1996年   18篇
  1995年   9篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
排序方式: 共有926条查询结果,搜索用时 0 毫秒
41.
42.
This work presents the synthesis of polyphosphazenes bearing L ‐proline methyl ester (ProOMe) and 4‐hydroxy‐l ‐proline methyl ester (HypOMe), aiming for new bioactive polymers for bone repair. The polymers were characterized by 1H and 31P NMR, FTIR, DSC, and TGA. Electrospun fibers were prepared using poly[bis(l ‐proline methyl ester)phosphazene] (PProP), and their potential for biomimetic mineralization, as well as the bulk material, were tested in simulated body fluid (1×SBF). Samples were analyzed between 24 h and 3 weeks of incubation using SEM/EDS and FTIR. After 24 h, spherical and flower‐like shapes of calcium phosphates (CaP) were crystallized on the bulk samples. The nanofibers presented spherical CaP crystals attached to them after 48 h of incubation. The Ca/P molar ratio of the crystals varied from 1.5 to 1.6. According to this study, PProP presents bioactivity in vitro, and its fibers offer sites for CaP nucleation like the collagen fibers in bone. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1318–1327  相似文献   
43.
In this study,a promising strategy has been developed to promote bone regeneration by combining antioxidant activities and osteoimmunomodulatory properties.Herein,an L-arginine/nanofish bone(Arg/NFB) nanocomplex has been prepared and evaluated in vitro and in vivo.The Arg/NFB nanocomplex possesses good antioxidant activities and could modulate the polarization of non-activated macrophage into different types and induce the secretion of pre-inflammato ry,anti-inflammatory,osteogenic as well as angiogenic cytokines.Additionally,the regulated immune microenvironment can enhance the osteogenic differentiation of mouse embryo osteoblast precursor cells(MC3 T3-E1) and angiogenic capacity of human umbilical vein endothelial cells(HUVECs),leading to the improved formation of mineralized nodules,alkaline phosphatase activity and angiogenic effects.In vivo results with cranial defect models reveal that the treatment of Arg/NFB nanocomplex exhibited significant improvement of new bone formation and angiogenesis.All the results demonstrate Arg/NFB nanocomplex with antioxidant activities and osteoimmunomodulatory properties could be a new idea for developing the next generation of bone regeneration biomaterials.  相似文献   
44.
运动对去卵巢大鼠骨元素代谢的影响   总被引:10,自引:7,他引:10  
用测定骨元素含量的方法,分析了运动对正常大鼠和切除双侧卵巢后的大鼠骨元素代谢的影响。将健康4个月龄雌性SD大鼠44只随机分成5组:(1)非去势非运动组;(2)非去势+运动组;(3)假去势非运动组;(4)去势非运动组;(5)去势+运动组。运动组用大鼠专用跑台中等运动强度训练,持续10周。结果表明,去卵巢大鼠骨Ca,Mg,S,Mn,Zn等含量显著降低,P含量显著增加。运动训练可使去卵巢大鼠降低的骨Ca,Mg,S,Mn,Zn等含量显著回升,骨P含量显著回降。提示中等强度运动训练可对抗由于去卵巢所引起的骨元素代谢紊乱。  相似文献   
45.
Molecular Control of Bioactivity in Sol-Gel Glasses   总被引:2,自引:0,他引:2  
Bioactive materials can be divided into: Class A bioactive glasses which exhibit rapid bonding to bone and soft connective tissue and are osteoproductive, and osteoconductive; and Class B bioactive ceramics, which bond slowly only to bone and are only osteoconductive. Bioactive sol-gel glasses composed of SiO2-CaO-P2O5 have Class A behavior in vitro and in vivo and also resorb as they enhance the proliferation of new trabecular bone.  相似文献   
46.
Abstract

The total energy, dipole moment and electron densities for each possible rotational conformation about the Cpy-S bonds of di-2-pyridyl disulfide were evaluated by using the semi-quantitative CNDO/2 method. The conformations in which the pyridine rings are coplanar with the valency plane of the bonded sulfur atom (cis-cis, cis-trans and trans-trans) were predicted to be the most favored ones.

Results of the theoretical study, when compared to some experimental determinations such as dipole moment and variable temperature pmr spectra, provided evidence that easy interconversion between these conformations can occur.  相似文献   
47.
In this work, aligned and molecularly oriented bone‐like PLLA semihollow fiber yarns were manufactured continuously from an optimized homogeneous polymer‐solvent‐nonsolvent system [PLLA, CH2Cl2, and dimethyl formamide (DMF)] by a single capillary electrospinning via self‐bundling technique. Here, it should be emphasized that the self‐bundling electrospinning technique, a very facile electrospinning technique with a grounded needle (which is to induce the self‐bundling of polymer nanofibers at the beginning of electrospinning process), is used for the alignment and molecular orientation of the polymer fiber, and the take‐up speed of the rotating drum for the electrospun fiber yarn collection is very low (0.5 m/s). PLLA can be dissolved in DMF and CH2Cl2 mixed solvent with different ratios. By varying the ratios of mixed solvent system, PLLA electrospun semihollow fiber with the porous inner structure and compact shell wall could be formed, the thickness of the shell and the size of inner pores could be adjusted. The results of polarized FTIR and wide angle X‐ray diffraction investigations verified that as‐prepared PLLA semihollow fiber yarns were well‐aligned and molecularly oriented. Both the formation mechanism of semihollow fibers with core‐shell structure and the orientation mechanism of polymer chains within the polymer fibers were all discussed. The as‐prepared self‐bundling electrospun PLLA fiber yarns possessed enhanced mechanical performance compared with the corresponding conventional electrospun PLLA fibrous nonwoven membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1118–1125, 2010  相似文献   
48.
Parathyroid hormone-related protein (PTHrP) is synthesized by diverse tissues, and its processing produces several fragments, each with apparently distinct autocrine and paracrine bioactivities. In bone, PTHrP appears to modulate bone formation in part through promoting osteoblast differentiation. The putative effect of PTH-like and PTH-unrelated fragments of PTHrP on human mesenchymal stem cell (MSCs) is not well known. Human MSCs were treated with PTHrP (1-36) or PTHrP (107-139) or both (each at 10 nM) in osteogenic or adipogenic medium, from the start or after 6 days of exposure to the corresponding medium, and the expression of several osteoblastogenic and adipogenic markers was analyzed. PTHrP (1-36) inhibited adipogenesis in MSCs and favoured the expression of osteogenic early markers. The opposite was observed with treatment of MSCs with PTHrP (107-139). Moreover, inhibition of the adipogenic differentiation by PTHrP (1-36) prevailed in the presence of PTHrP (107-139). The PTH/PTHrP type 1 receptor (PTH1R) gene expression was maximum in the earlier and later stages of osteogenesis and adipogenesis, respectively. While PTHrP (107-139) did not modify the PTH1R overexpression during adipogenesis, PTHrP (1-36) did inhibit it; an effect which was partially affected by PTHrP (7-34), a PTH1R antagonist, at 1 µM. These findings demonstrate that both PTHrP domains can exert varying effects on human MSCs differentiation. PTHrP (107-139) showed a tendency to favor adipogenesis, while PTHrP (1-36) induced a mild osteogenic effect in these cells, and inhibited their adipocytic commitment. This further supports the potential anabolic action of the latter peptide in humans.  相似文献   
49.
50.
Ten international laboratories participated in an inter-laboratory comparison of a fossil bone composite with the objective of producing a matrix and structure-matched reference material for studies of the bio-mineralization of ancient fossil bone. We report the major and trace element compositions of the fossil bone composite, using in-situ method as well as various wet chemical digestion techniques.For major element concentrations, the intra-laboratory analytical precision (%RSDr) ranges from 7 to 18%, with higher percentages for Ti and K. The %RSDr are smaller than the inter-laboratory analytical precision (%RSDR; <15-30%). Trace element concentrations vary by ∼5 orders of magnitude (0.1 mg kg−1 for Th to 10,000 mg kg−1 for Ba). The intra-laboratory analytical precision %RSDr varies between 8 and 45%. The reproducibility values (%RSDR) range from 13 to <50%, although extreme value >100% was found for the high field strength elements (Hf, Th, Zr, Nb). The rare earth element (REE) concentrations, which vary over 3 orders of magnitude, have %RSDr and %RSDR values at 8-15% and 20-32%, respectively. However, the REE patterns (which are very important for paleo-environmental, taphonomic and paleo-oceanographic analyses) are much more consistent.These data suggest that the complex and unpredictable nature of the mineralogical and chemical composition of fossil bone makes it difficult to set-up and calibrate analytical instruments using conventional standards, and may result in non-spectral matrix effects. We propose an analytical protocol that can be employed in future inter-laboratory studies to produce a certified fossil bone geochemical standard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号