首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   64篇
  国内免费   58篇
化学   334篇
晶体学   4篇
力学   61篇
综合类   12篇
数学   11篇
物理学   106篇
综合类   385篇
  2024年   2篇
  2023年   9篇
  2022年   33篇
  2021年   51篇
  2020年   29篇
  2019年   24篇
  2018年   28篇
  2017年   28篇
  2016年   27篇
  2015年   32篇
  2014年   47篇
  2013年   44篇
  2012年   43篇
  2011年   32篇
  2010年   36篇
  2009年   41篇
  2008年   34篇
  2007年   46篇
  2006年   42篇
  2005年   42篇
  2004年   36篇
  2003年   32篇
  2002年   39篇
  2001年   21篇
  2000年   25篇
  1999年   12篇
  1998年   10篇
  1997年   15篇
  1996年   18篇
  1995年   9篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
排序方式: 共有913条查询结果,搜索用时 15 毫秒
101.
《先进技术聚合物》2018,29(9):2553-2559
A simple 2‐step method, consisting of film casting and polyvinyl alcohol leaching, is proposed to prepare magnesium oxide (MO) nanoparticle‐reinforced sodium alginate scaffolds with right properties for bone tissue engineering. The cytocompatibility of the as‐prepared scaffolds was also evaluated using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium‐bromide yellow tetrazole assay test, wherein chondrocyte cells had been considered as target cells. According to the results, the ensuing sodium alginate nanocomposites, containing 4‐wt% MO nanoparticles, demonstrated the highest physical and mechanical properties after leaching step. The Young modulus of sodium alginate/4‐wt% MO was improved about 44%, in comparison with that of the pure alginate sample. Furthermore, incorporating MO nanoparticles up to 4 wt% controlled the liquid uptake capacity of scaffolds vis‐à‐vis the resultant pure sodium alginate sample. Moreover, with increasing the nanoparticle content, the antibacterial properties of scaffolds enhanced, but their degradation rates under in vitro conditions tapered off. With the introduction of 3‐ and 4‐wt% MO, the average diameter of the bacterial zone of the scaffold samples reduced to less than 10 mm2, suggesting an insensitive antimicrobial performance, compared with the pure sodium alginate and the samples with 1‐ and 2‐wt% MO content, which exhibit antimicrobial sensitivity. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium‐bromide assay test also revealed the cultivated chondrocyte cells on the 4‐wt% MO nanoparticle‐reinforced scaffold possessed better interaction as well as appropriate cell attachment and proliferation than the pristine sodium alginate sample.  相似文献   
102.
The combination of bioactive components such as calcium phosphates and fibrous structures are encouraging niche‐mimetic keys for restoring bone defects. However, the importance of hemocompatibility of the membranes is widely ignored. Heparin‐loaded nanocomposite poly(ε‐caprolactone) (PCL)‐α‐tricalcium phosphate (α‐TCP) fibrous membranes are developed to provide bioactive and hemocompatible constructs for bone tissue engineering. Nanocomposite membranes are optimized based on bioactivity, mechanical properties, and cell interaction. Consequently, various concentrations of heparin molecules are loaded within nanocomposite fibrous membranes. In vitro heparin release profiles reveal a sustained release of heparin over the period of 14 days without an initial burst. Moreover, heparin encapsulation enhances mesenchymal stem cell (MSC) attachment and proliferation, depending on the heparin content. It is concluded that the incorporation of heparin within TCP–PCL fibrous membranes provides the most effective cellular interactions through synergistic physical and chemical cues.  相似文献   
103.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   
104.
105.
目的探讨经后路椎板切除摘除胸腰段椎管内肿瘤,同时行椎弓根螺钉内固定植骨融合后对提高脊柱的稳定性的临床疗效。方法采用后正中入路显微切除椎管肿瘤后应用椎弓根螺钉内固定植骨融合技术进行椎管重建12例,其中,肿瘤位于胸段7例,腰段5例。结果随访9个月~5年观察效果,X线平片显示手术区植骨全部骨性融合,脊柱稳定。结论采用后正中入路显微切除胸腰段椎管肿瘤后应用椎弓根螺钉内固定植骨融合技术,能够维持手术后脊柱的稳定性,防止远期后凸畸形的发生。  相似文献   
106.
Bone-targeting N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-PGE(1) conjugates, containing cathepsin K sensitive spacers, were incubated with induced osteoclasts and osteoblasts, their precursors, and control non-skeletal cells. The release of PGE(1) was monitored by an HPLC assay. In both murine and human cell lines, osteoclasts appeared to be the most active cells in the cleavage (PGE(1) release). Incubation with osteoblasts also resulted in fast PGE(1) release, whereas precursor and control cells released PGE(1) with a substantially slower rate than bone cells (apparently through ester bond cleavage). Experiments in the presence of inhibitors revealed that other enzymes, in addition to cathepsin K, were participating in the cleavage of the conjugate. Confocal fluorescence studies exposed internalization of the conjugate by endocytosis with ultimate localization in the lysosomal/endosomal compartment.  相似文献   
107.
On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that the LC-IRMS was successful for high-precision (13)C isotopic measurements in tracer studies giving (13)C isotopic enrichment similar to the GC-C-IRMS but without the step of GC derivatisation. Therefore, for clinical studies requiring high-precision isotopic measurement, the LC-IRMS is the method of choice to measure the isotopic ratio.  相似文献   
108.
This study assesses whether the concentrations of biologically important elements in bones are altered by long‐term consumption of cadmium (Cd)‐contaminated water. Heavy metal poisoning has significant impact on humans, and pollutants such as Cd are often found at high concentrations in waterways. Twelve Sprague Dawley rats consumed water with 50 p.p.m. Cd (Cd group), and another 12 consumed normal water (control group). Six subjects from each group were sacrificed after 2 weeks and the others after 4 weeks. Spectra were acquired from the femur by using the EDAX Eagle III micro‐XRF setup, and quantitative calculations were performed by using the fundamental parameter method to determine the concentrations of elements. A bone calcium/phosphorus concentration ratio (Ca/P) of 2.07 ± 0.001 is observed in the spectra from control subjects after 2 weeks and 2.07 ± 0.001 after 4 weeks. In Cd subjects, Ca/P after 2 weeks is 2.04 ± 0.001 and after 4 weeks is 1.97 ± 0.003. Statistically significant differences are obtained when comparing controls with Cd subjects at both time points and when comparing Cd subjects at both time points. Cadmium poisoning significantly affects bone Ca and P concentrations, increasing the likelihood of osteoporosis and other bone diseases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
109.
The present study aims to investigate the propagation of time-reversed Lamb waves in acrylic cylindrical tubes as cortical-bone-mimicking phantoms. Time-reversed Lamb waves could be successfully launched in 6 acrylic tubes with wall thicknesses from 2 to 12 mm by using a modified time reversal method. The group velocities of the time-reversed Lamb waves in the acrylic tubes were measured by using the axial transmission technique. They decreased very slightly with increasing wall thickness, showing good agreement with the theoretical group velocity of the A0 Lamb wave in the acrylic plate. These results suggest that the time-reversed Lamb waves in the acrylic tubes would essentially behave as the A0 Lamb wave, consistent with the behavior of the slow guided wave in long cortical bones. It is expected that the application of the time-reversed Lamb waves in long bones would enhance clinical potential of ultrasonic technologies for the diagnosis of osteoporosis.  相似文献   
110.
Gelatin nanoparticles can be tuned with respect to their drug loading efficiency, degradation rate, and release kinetics, which renders these drug carriers highly suitable for a wide variety of biomedical applications. The ease of functionalization has rendered gelatin an interesting candidate material to introduce specific motifs for selective targeting to specific organs, but gelatin nanoparticles have not yet been modified to increase their affinity to mineralized tissue. By means of conjugating bone‐targeting alendronate to biocompatible gelatin nanoparticles, a simple method is developed for the preparation of gelatin nanoparticles which exhibit strong affinity to mineralized surfaces. It has been shown that the degree of alendronate functionalization can be tuned by controlling the glutaraldehyde crosslinking density, the molar ratio between alendronate and glutaraldehyde, as well as the pH of the conjugation reaction. Moreover, it has been shown that the affinity of gelatin nanoparticles to calcium phosphate increases considerably upon functionalization with alendronate. In summary, gelatin nanoparticles have been developed, which exhibit great potential for use in bone‐specific drug delivery and regenerative medicine.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号