首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   170篇
  国内免费   30篇
化学   706篇
力学   1篇
综合类   4篇
物理学   16篇
综合类   71篇
  2023年   2篇
  2022年   46篇
  2021年   47篇
  2020年   62篇
  2019年   16篇
  2018年   38篇
  2017年   31篇
  2016年   49篇
  2015年   50篇
  2014年   40篇
  2013年   49篇
  2012年   40篇
  2011年   31篇
  2010年   19篇
  2009年   22篇
  2008年   31篇
  2007年   26篇
  2006年   24篇
  2005年   24篇
  2004年   27篇
  2003年   31篇
  2002年   10篇
  2001年   12篇
  2000年   15篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1968年   1篇
排序方式: 共有798条查询结果,搜索用时 15 毫秒
41.
A library of functionalized chemical probes capable of reacting with ketosynthase‐bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl‐ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology.  相似文献   
42.
The 1,3-enyne moiety is commonly found in cyclohexanoid natural products produced by endophytic and plant pathogenic fungi. Asperpentyn ( 1 ) is a 1,3-enyne-containing cyclohexanoid terpenoid isolated from Aspergillus and Pestalotiopsis. The genetic basis and biochemical mechanism of 1,3-enyne biosynthesis in 1 , and other natural products containing this motif, has remained enigmatic despite their potential ecological roles. Identified here is the biosynthetic gene cluster and characterization of two crucial enzymes in the biosynthesis of 1 . A P450 monooxygenase that has a dual function, to first catalyze dehydrogenation of the prenyl chain to generate a cis-diene intermediate and then serve as an acetylenase to yield an alkyne moiety, and thus the 1,3-enyne, was discovered. A UbiA prenyltransferase was also characterized and it is unusual in that it favors transferring a five-carbon prenyl chain, rather than a polyprenyl chain, to a p-hydroxybenzoic acid acceptor.  相似文献   
43.
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.  相似文献   
44.
The colinearity of canonical modular polyketide synthases, which creates a direct link between multienzyme structure and the chemical structure of the biosynthetic end-product, has become a cornerstone of knowledge-based genome mining. Herein, we report genetic and enzymatic evidence for the remarkable role of an enoylreductase in the polyketide synthase for azalomycin F biosynthesis. This internal enoylreductase domain, previously identified as acting only in the second of two chain extension cycles on an initial iterative module, is shown to also catalyze enoylreduction in trans within the next module. The mechanism for this rare deviation from colinearity appears to involve direct cross-modular interaction of the reductase with the longer acyl chain, rather than back transfer of the substrate into the iterative module, suggesting an additional and surprising plasticity in natural PKS assembly-line catalysis.  相似文献   
45.
Adenosylhopane is a crucial intermediate in the biosynthesis of bacteriohopanepolyols, which are widespread prokaryotic membrane lipids. Herein, it is demonstrated that reconstituted HpnH, a putative radical S‐adenosyl‐l ‐methionine (SAM) enzyme, commonly encoded in the hopanoid biosynthetic gene cluster, converts diploptene into adenosylhopane in the presence of SAM, flavodoxin, flavodoxin reductase, and NADPH. NMR spectra of the enzymatic reaction product were identical to those of synthetic (22R)‐adenosylhopane, indicating that HpnH catalyzes stereoselective C?C formation between C29 of diploptene and C5′ of 5′‐deoxyadenosine. Further, the HpnH reaction in D2O‐containing buffer revealed that a D atom was incorporated at the C22 position of adenosylhopane. Based on these results, we propose a radical addition reaction mechanism catalyzed by HpnH for the formation of the C35 bacteriohopane skeleton.  相似文献   
46.
Sulfur‐based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S‐adenosyl‐l ‐methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di‐(5′‐deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical‐mediated SH reaction on the sulfonium center of SAM. The sulfonium‐based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium‐based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.  相似文献   
47.
Microbial biosynthesis of hydrocarbon from CO2 reduction driven by electron uptake process from the cathodic electrode has gained intensive attention in terms of potential industrial application. However, a lack of a model system for detailed studies on the mechanism of the CO2 reduction hinders the improvement in efficiency for microbial electrosynthesis. Here, we examined the mechanism of microbial CO2 reduction at the cathode by a well‐described microbe for extracellular electron uptake, Shewanella oneidensis MR‐1, capable of reducing gaseous CO2 to produce formic acid. Using whole‐cell electrochemical assay, we observed stable cathodic current production at ?0.65 V vs Ag/AgCl KCl sat. associated with the introduction of CO2. The observed cathodic current was enhanced by the addition of 4 μM riboflavin, which specifically accelerates the electron uptake process of MR‐1 by the interaction to its outer‐membrane c‐type cytochromes. The significant impact of an uncoupler agent and a mutant strain of MR‐1 lacking sole F‐type ATPase suggested the importance of proton import to the cytoplasm for the cathodic CO2 reduction. The present data suggest that MR‐1 potentially serves as a model system for microbial electrosynthesis from CO2.  相似文献   
48.
While halogenated nucleosides are used as common anticancer and antiviral drugs, naturally occurring halogenated nucleosides are rare. Adechlorin (ade) is a 2′‐chloro nucleoside natural product first identified from Actinomadura sp. ATCC 39365. However, the installation of chlorine in the ade biosynthetic pathway remains elusive. Reported herein is a Fe2+‐α‐ketoglutarate halogenase AdeV that can install a chlorine atom at the C2′ position of 2′‐deoxyadenosine monophosphate to afford 2′‐chloro‐2′‐deoxyadenosine monophosphate. Furthermore, 2′,3′‐dideoxyadenosine‐5′‐monophosphate and 2′‐deoxyinosine‐5′‐monophosphate can also be converted, albeit 20‐fold and 2‐fold, respectively, less efficiently relative to the conversion of 2′‐deoxyadenosine monophosphate. AdeV represents the first example of a Fe2+‐α‐ketoglutarate‐dependent halogenase that converts nucleotides into chlorinated analogues.  相似文献   
49.
Bacterial trans‐acyltransferase polyketide synthases (trans‐AT PKSs) are multimodular megaenzymes that biosynthesize many bioactive natural products. They contain a remarkable range of domains and module types that introduce different substituents into growing polyketide chains. As one such modification, we recently reported Baeyer–Villiger‐type oxygen insertion into nascent polyketide backbones, thereby generating malonyl thioester intermediates. In this work, genome mining focusing on architecturally diverse oxidation modules in trans‐AT PKSs led us to the culturable plant symbiont Gynuella sunshinyii, which harbors two distinct modules in one orphan PKS. The PKS product was revealed to be lobatamide A, a potent cytotoxin previously only known from a marine tunicate. Biochemical studies show that one module generates glycolyl thioester intermediates, while the other is proposed to be involved in oxime formation. The data suggest varied roles of oxygenation modules in the biosynthesis of polyketide scaffolds and support the importance of trans‐AT PKSs in the specialized metabolism of symbiotic bacteria.  相似文献   
50.
The interaction in multisubunit non‐ribosomal peptide synthetases (NRPSs) is mediated by docking domains that ensure the correct subunit‐to‐subunit interaction. We introduced natural docking domains into the three‐module xefoampeptide synthetase (XfpS) to create two to three artificial NRPS XfpS subunits. The enzymatic performance of the split biosynthesis was measured by absolute quantification of the products by HPLC‐ESI‐MS. The connecting role of the docking domains was probed by deleting integral parts of them. The peptide production data was compared to soluble protein amounts of the NRPS using SDS‐PAGE. Reduced peptide synthesis was not a result of reduced soluble NRPS concentration but a consequence of the deletion of vital docking domain parts. Splitting the xefoampeptide biosynthesis polypeptide by introducing docking domains was feasible and resulted in higher amounts of product in one of the two tested split‐module cases compared to the full‐length wild‐type enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号