The research technique of amorphous magnetics is described. The paper gives the experimental data obtained by a multifunctional low-temperature radiospectrometer Buran in the mm radiowave range and presents their analysis. 相似文献
The perpendicularv8 band lying in the 1000–1100 cm–1 region has been studied from infrared and laser Stark, spectra. We were interested in the part of spectrum corresponding to the spectral range of the 9 m CO2 laser lines. Assignments of rovibrational lines with J'<40 and K'<6 have been made. About 100 Stark resonances have been assigned to 12 rovibrational transitions. Effective molecular constants and dipole moment have been determined with high accuracy. A list of close resonances with CO2 laser lines is given and may be used for optical pumping experiments. 相似文献
We have developed a simple assessment method for the overlap between spheroidal particles, which neither requires the complex manipulation of vectors and matrices that is indispensable in the ordinary methods, nor is based on a model potential. Moreover, we have developed an evaluation method for the interaction energy arising from the overlap of the steric layer coating spheroidal particles. This is based on a sphere-connected particle model, but some modifications are introduced in order to express an appropriate repulsive interaction energy at the deepest overlapping position. We have investigated the phase change in a magnetic spheroidal particle suspension for a two-dimensional system by means of Monte Carlo simulations. In the case of no external magnetic field, if the magnetic particle-particle interaction is sufficiently strong to favour cluster formation, long raft-like clusters tend to be formed in a dilute situation. With decreasing values of area fraction, a chain-like structure in a dense situation transforms into a raft-like structure within a narrow range of the particle area fraction. Similarly, the raft-like clusters are preferred in a weak applied magnetic field, but an increase in the field strength induces a phase change from a raft-like into a chain-like structure.Highlights of the present paper:
A simple assessment method has been proposed for the overlap between two spheroidal particles.
The particle overlap assessment is free from a complex mathematical manipulation regarding vectors and matrices.
A modified sphere-connected model has been proposed in order to more accurately evaluate a repulsive interaction due to the overlap of the steric layers coating spheroidal particles.
2D Monte Carlo simulations have been performed to elucidate the phenomenon of a phase change by magnetic spheroidal particles on a material plane surface.
A phase change between a raft-like and a chain-like aggregate structure is able to be controlled by the area fraction of particles and an external magnetic field.
ABSTRACTThe average magnetic moment per atom of Mn13 cluster is expected to be enhanced by doping or coating with a shell. Several ternary core–shell icosahedral clusters TM@Mn12@Au20 were constructed by combining substituting the central Mn with VIII elements (Fe, Co, Ni, Ru, Rh, Pd and Pt) and coating with a icosahedral Au20 shell, and systematically studied by using the first-principles density functional method. Compared to Mn13, Fe@Mn12@Au20 cluster shows a giant enhancement on total magnetic moment (52?µB) which can be greatly attributed to the ferromagnetic coupling between spin moments of atoms. Coating with Au20 shell enlarged the average distances of TM-Mn and Mn-Mn and is a useful way to change the magnetic coupling style. By analysis of density of states and electron localisation functional, we can conclude that the weak hybridisation between Fe and Mn in Fe@Mn12@Au20 is propitious to maintain their original direction of spin moments of atoms and then form ferromagnetic coupling. 相似文献