首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2460篇
  免费   389篇
  国内免费   111篇
化学   95篇
晶体学   8篇
力学   858篇
综合类   14篇
数学   269篇
物理学   1209篇
综合类   507篇
  2024年   6篇
  2023年   17篇
  2022年   42篇
  2021年   51篇
  2020年   80篇
  2019年   58篇
  2018年   66篇
  2017年   73篇
  2016年   91篇
  2015年   90篇
  2014年   135篇
  2013年   163篇
  2012年   135篇
  2011年   182篇
  2010年   107篇
  2009年   146篇
  2008年   133篇
  2007年   134篇
  2006年   142篇
  2005年   109篇
  2004年   106篇
  2003年   104篇
  2002年   81篇
  2001年   72篇
  2000年   90篇
  1999年   51篇
  1998年   62篇
  1997年   55篇
  1996年   52篇
  1995年   27篇
  1994年   33篇
  1993年   43篇
  1992年   28篇
  1991年   24篇
  1990年   36篇
  1989年   22篇
  1988年   15篇
  1987年   19篇
  1986年   10篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   8篇
  1981年   13篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2960条查询结果,搜索用时 0 毫秒
61.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
This article describes a nutrient‐phytoplankton‐zooplankton system with nutrient recycling in the presence of toxicity. We have studied the dynamical behavior of the system with delayed nutrient recycling in the first part of the article. Uniform persistent of the system is examined. In the second part of the article, we have incorporated diffusion of the plankton population to the system and dynamical behavior of the system is analyzed with instantaneous nutrient recycling. The condition of the diffusion driven instability is obtained. The conditions for the occurrence of Hopf and Turing bifurcation critical line in a spatial domain are derived. Variation of the system with small periodicity of diffusive coefficient has been studied. Stability condition of the plankton system subject to the periodic diffusion coefficient of the zooplankton is derived. It is observed that nutrient‐phytoplankton‐zooplankton interactions are very complex and situation specific. Moreover, we have obtained different exciting results, ranging from stable situation to cyclic oscillatory behavior may occur under different favorable conditions, which may give some insights for predictive management. © 2014 Wiley Periodicals, Inc. Complexity 21: 229–241, 2015  相似文献   
63.
Numerical experiments on nonlinear equations of the 1st and 3rdorder derivatives have been carried out through structural analyses in the phase space according to the numerical instability of illposed systems, with changes of initial values and parameters, etc.. The results show that the quantitative instability in an illposed system may reveal reversed transformation in system evolution by structural representation, and confirm A·Dauglas’ theorem that “a nonlinear equation does not satisfy the existence of the initial value in a linear wellposed system”.  相似文献   
64.
利用扩展的三变量布鲁塞尔模型,得到了新的时空斑图,其中包括振荡四边形斑图、调制条纹斑图以及螺旋波斑图.通过对模型进行线性稳定性分析,发现这些时空斑图是由于短波不稳定性所引起的.另外,还研究了系统大小对时空斑图的影响.  相似文献   
65.
The paper presents a wave basin experiment of a direct-driven point-absorber wave energy converter moving in six degrees of freedom. The goal of the work is to study the dynamics and energy absorption of the wave energy converter, and to verify under which conditions numerical models restricted to heave can capture the behaviour of a point-absorber moving in six degrees of freedom. Several regular and irregular long-crested waves and different damping values of the power take-off system have been tested. We collected data in terms of power output, device motion in six degrees of freedom and wave elevation at different points of the wave basin. A single-body numerical model in the frequency domain and a two-body model in the time domain are used in the study. Motion instabilities due to parametric resonance observed during the experiments are discussed and analysis of the buoy motion in terms of the Mathieu instability is also presented. Our results show that the simplified models can reproduce the body dynamics of the studied converter as long as the transverse non-linear instabilities are not excited, which typically is the case in irregular waves. The performance of the more complex time domain model is able to reproduce both the buoy and PTO dynamics, while the simpler frequency domain model can only reproduce the PTO dynamics for specific cases. Finally, we show that the two-body dynamics of the studied wave energy converter affects the power absorption significantly, and that common assumptions in the numerical models, such as stiff mooring line or that the float moves only in heave, may lead to incorrect predictions for certain sea states.  相似文献   
66.
采用颗粒离散元方法和持续同调理论,研究了内排土场堆叠至不同高度时的边坡稳定性。为便于研究,现采用一水平金属板向下施加压力,代替不同厚度土层的重力荷载,对边坡在竖向荷载作用下的失稳破坏过程进行了颗粒离散元模拟。研究了二维边坡土颗粒速度总矢量、边坡失稳破坏时滑移开裂面的角度以及边坡坡顶y方向的平均速度等宏观响应过程,并构建了自然堆积下边坡堆积体颗粒的法向力链无向网络模型。最后,用持续同调方法对边坡坡顶颗粒接触力链网络的拓扑特征进行分析,获得条码图,建立了岩体结构持续同调特征与失稳演化的关系。本文为研究边坡失稳拓扑识别提供了一种新方法,从而可以有效预测边坡的失稳破坏。  相似文献   
67.
在J-TEXT托卡马克上研制了一套高速单色成像系统用于研究等离子体杂质行为与磁流体力学(MHD)不稳定性之间的关系.用STRAH代码模拟估算了碳杂质(CV227.09nm,CIII464.7nm)辐射强度.采用光纤耦合方法设计了系统光路结构,光路覆盖高场侧区域0.3a~0.95a(a为小半径),其空间分辨率为1.3cm...  相似文献   
68.
《Physics letters. A》2020,384(18):126377
Structure formation in turbulence can be understood as an instability of “plasma” formed by fluctuations serving as effective particles. These “particles” are quantumlike in the sense that their wavelengths are non-negligible compared to the sizes of background coherent structures. The corresponding “kinetic equation” describes the Wigner matrix of the turbulent field, and the coherent structures serve as collective fields. This formalism is usually applied to manifestly quantumlike or scalar waves. Here, we show how to systematically extend it to more complex systems using compressible Navier–Stokes turbulence as an example. In this case, the fluctuation Hamiltonian is a five-dimensional matrix operator and diverse modulational modes are present. As an illustration, we calculate these modes for a sinusoidal shear flow and find two modulational instabilities. One of them is specific to supersonic flows, and the other one is a Kelvin–Helmholtz-type instability that is a generalization of the known zonostrophic instability. Our calculations are readily extendable to other types of turbulence, for example, magnetohydrodynamic turbulence in plasma.  相似文献   
69.
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.  相似文献   
70.
The paper analyses the hydrodynamic instability of a flame propagating in the space between two parallel plates in the presence of gas flow. The linear analysis was performed in the framework of a two-dimensional model that describes the averaged gas flow in the space between the plates and the perturbations development of two-dimensional combustion wave. The model includes the parametric dependences of the flame front propagation velocity on its local curvature and on the combustible gas velocity averaged along the height of the channel. It is assumed that the viscous gas flow changes the surface area of the flame front and thereby affects the propagation velocity of the two-dimensional combustion wave. In the absence of the influence of the channel walls on the gas flow, the model transforms into the Darrieus–Landau model of flame hydrodynamic instability. The dependences of the instability growth rate on the wave vector of disturbances, the velocity of the unperturbed gas flow, the viscous friction coefficients and other parameters of the problem are obtained. It is shown that the viscous gas flow in the channel can lead, in some cases, to a significant increase in instability compared with a flame propagating in free space. In particular, the instability increment depends on the direction of the gas flow with respect direction of the flame propagation. In the case when the gas flow moves in the opposite direction to the direction of the flame propagation, the pulsating instability can appear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号