首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   55篇
  国内免费   27篇
化学   312篇
晶体学   1篇
力学   6篇
综合类   14篇
数学   6篇
物理学   35篇
综合类   291篇
  2024年   3篇
  2023年   16篇
  2022年   42篇
  2021年   43篇
  2020年   39篇
  2019年   18篇
  2018年   9篇
  2017年   22篇
  2016年   20篇
  2015年   27篇
  2014年   32篇
  2013年   25篇
  2012年   44篇
  2011年   34篇
  2010年   18篇
  2009年   21篇
  2008年   22篇
  2007年   28篇
  2006年   18篇
  2005年   26篇
  2004年   21篇
  2003年   14篇
  2002年   12篇
  2001年   14篇
  2000年   17篇
  1999年   9篇
  1998年   13篇
  1997年   11篇
  1996年   6篇
  1995年   8篇
  1994年   14篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有665条查询结果,搜索用时 10 毫秒
641.
642.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial N? Cl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.  相似文献   
643.
A family of three neutral iridium(III) tetrazolato complexes are investigated as bacterial imaging agents. The complexes offer a facile tuning of the emission colour from green (520 nm) to red (600 nm) in aqueous media, while keeping the excitation wavelength unchanged. The three complexes do not inhibit the bacterial growth of Bacillus Cereus, used as a model in this study, and exhibit extremely fast cellular uptake. After a minute incubation time, the nontoxic complexes show subcellular localisation in spherical structures identified as lipid vacuoles. Confocal Raman imaging has been exploited for the first time on live bacteria, to provide direct and label-free mapping of the lipid-enriched organelles within B. cereus, complementing the use of luminescent probes. Examination of the Raman spectra not only confirmed the presence of lipophilic inclusions in B. cereus but offered additional information about their chemical composition, suggesting that the lipid vacuoles may contain polyhydroxybutyrate (PHB).  相似文献   
644.
In the present scenario, metal nanoparticles have elicited a great deal of interest in biomedical applications because of their unique properties and antimicrobial potentials. Over the past few years, the green nanotechnology has materialized as a momentous approach for the synthesis and fabrication of noble metal salt and metal nanoparticles. The green route synthesis exploits diverse reducing and stabilizing agents from bacterial resources for the successful synthesis of metal nanoparticles. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as gold, silver, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide, zinc sulphate, cadmium sulphide and many more. These noble nanoparticles can be exploited in pharmaceutical industry as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, biosensors, etc.  相似文献   
645.
646.
The carboxymethylation of bacterial cellulose (BC) was studied under typical heterogeneous reaction conditions. It was found that the BC possesses a significantly lower reactivity compared to wood cellulose converted under comparable conditions. Moreover, water-solubility of carboxymethyl cellulose (CMC) obtained from BC appears at rather high degree of substitution of about 1.5 although a nearly statistical functionalization pattern was analyzed by HPLC. Obviously, the nano-structure of BC is important for the reactivity and the properties of the synthesized CMC like water-solubility.  相似文献   
647.
Summary: Nanocelluloses combine in a very exciting manner important properties of cellulose with amazing features of nano-scale materials. With a view to the increasing discussion on the potential risks of nanoparticles and nanotechnology to human health and the environment, it is important to point out that the nanocellulose fibers are irreversibly networked in the supramolecular cellulose structure. This contribution assembles the current knowledge in research, development, and application in the field of nanocelluloses through examples. The topics combine selected results on nanocelluloses from bacteria and wood as well as the formation and in situ shaping of cellulose bodies, the coating of materials with nanosized cellulose networks/supports, and the preparation of nanocellulose composites as well as the use of bacterial cellulose as novel type of medical implants.  相似文献   
648.
Novel Zn(II) complexes with the general formula: [Zn(furo)2(L)n], n = 1 or 2, (furo = furosemide = (4‐chloro‐2‐(furan‐2‐ylmethylamino)‐5‐sulfamoylbenzoic acid) were prepared. The complexes [Zn(furo)2(MeOH)2] ( 1 ; MeOH = methanol), [Zn(furo)2(2‐ampy)2] ( 2 ; 2‐ampy = 2‐aminopyridine), [Zn(furo)2(2‐ammepy)2] ( 3 ; 2‐ammepy = 2‐aminomethylpyridine), [Zn(furo)2(H2O)(2,2‐bipy)] ( 4 ; 2,2′‐bipy = 2,2′‐bipyridine), [Zn(furo)2(H2O)(4,4′‐bipy)] ( 5 ; 4,4′‐bipy = 4,4′‐bipyridine), [Zn(furo)2(1,10‐phen)] ( 6 ; 1,10‐phen = 1,10‐phenanthroline), [Zn(furo)2(2,9‐dmp)] ( 7 ; 2,9‐dmp = 2,9‐dimethyl‐1,10‐phenanthroline), and [Zn (furo)2(quin)2] ( 8 ; quin = quinoline) were synthesized and characterized using different techniques such as IR, UV–Vis, 1H NMR, 13C NMR, LC/MS and others. The crystal structure of complex ( 4 ) was determined using single‐crystal X‐ray diffraction. The anti‐bacterial activity of complexes ( 1 – 8 ) was tested using agar diffusion method against three gram‐positive (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis) and three gram‐negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa). The obtained results showed different Inhibition Zone Diameters (IZD) with various anti‐bacterial activities against the selected gram‐positive and gram‐negative bacteria. In addition, the rate of bis‐(4‐nitrophenyl) phosphate hydrolysis was measured at different temperatures, different pH values and different concentrations. The rates for the eight complexes were in the following order: complex 4 > 2 > 5 > 8  >  7  >  6  >  3  >  1 .  相似文献   
649.
Five new pinocembrin derivatives (MC1-MC5) were synthesized by Steglich reaction, and investigated for their antimicrobial, antioxidant, and anti-inflammatory activity. MC2 (oleoyl derivative) and MC3 (linoleoyl derivative) have shown the highest inhibitory effects on bacterial proliferation, with MIC values of 32 μg/mL against Staphylococcus aureus. The docosahexaenoyl derivative MC5 displayed the highest anti-inflammatory activity, decreasing NO production in LPS-stimulated macrophages with an IC50 value of 15.51 μg/mL higher than the positive control diclofenac (IC50 of 39.71 μg/mL). All new synthesized compounds showed no anti-proliferative effects on RAW 264.7 cells. Results demonstrated as the introduction of fatty acid substituents improved the biological profile of pinocembrin. Moreover, the chemical nature of substituents significantly affects the bioactivity. These preliminary results outline the importance to investigate the synthesis of pinocembrin fatty acids derivatives as new and safe anti-microbial/anti-inflammatory agents.  相似文献   
650.
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg−1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号