首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   66篇
  国内免费   55篇
化学   356篇
力学   19篇
综合类   16篇
数学   39篇
物理学   73篇
综合类   716篇
  2023年   21篇
  2022年   25篇
  2021年   52篇
  2020年   32篇
  2019年   33篇
  2018年   30篇
  2017年   35篇
  2016年   46篇
  2015年   46篇
  2014年   45篇
  2013年   53篇
  2012年   68篇
  2011年   59篇
  2010年   42篇
  2009年   67篇
  2008年   73篇
  2007年   77篇
  2006年   57篇
  2005年   48篇
  2004年   45篇
  2003年   45篇
  2002年   29篇
  2001年   23篇
  2000年   27篇
  1999年   23篇
  1998年   13篇
  1997年   13篇
  1996年   11篇
  1995年   13篇
  1994年   15篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   10篇
  1989年   9篇
  1988年   1篇
  1987年   5篇
  1985年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有1219条查询结果,搜索用时 46 毫秒
41.
We developed the dual‐micropillar‐based microfluidic platform to direct embryonic stem (ES) cell fate. 4 × 4 dual‐micropillar‐based microfluidic platform consisted of 16 circular‐shaped outer micropillars and 8 saddle‐shaped inner micropillars in which single ES cells were cultured. We hypothesized that dual‐micropillar arrays would play an important role in controlling the shear stress and cell docking. Circular‐shaped outer micropillars minimized the shear stress, whereas saddle‐shaped inner micropillars allowed for docking of individual ES cells. We observed the effect of saddle‐shaped inner micropillars on cell docking in response to hydrodynamic resistance. We also demonstrated that ES cells cultured for 6 days within the dual‐micropillar‐based microfluidic platform differentiated into neural‐like cells. Therefore, this dual‐micropillar‐based microfluidic platform could be a potentially powerful method for screening of lineage commitments of single ES cells.  相似文献   
42.
Direct attachment of gold nanoparticles to a green support without the use of an external reducing agent and using it for removing toxic pollutants from wastewater, i. e., reduction of nitroarene to amine, are described. A novel approach involving the reduction of gold by the jute plant (Corchorus genus) stem-based (JPS) support itself to form nanoparticles (AuNPs) to be used as a catalytic system (‘dip-catalyst’) and its catalytic activity for the hydrogenation of series of nitroarenes in aqueous media are presented. AuNPs/JPS catalyst was characterized using SEM, UV-Vis, FTIR, TEM, XPS, and ICP-OES. Confined area elemental mapping exhibits uniform and homogeneous distribution of AuNPs on the support surface. TEM shows multi-faceted AuNPs in the range of 20–30 nm. The reactivity of AuNPs/JPS for the transfer hydrogenation of nitroarene as well as hydrogenation of quinoline under molecular H2 pressure was evaluated. Sodium borohydride, when used as the hydrogen source, demonstrates a high catalytic efficiency in the transfer hydrogenation reduction of 4-nitrophenol (4-NP). Quinoline is quantitatively and chemoselectively hydrogenated to 1,2,3,4-tetrahydroquinoline (py-THQ) using molecular hydrogen. Reusability studies show that AuNPs are stable on the support surface and their selectivity is not affected.  相似文献   
43.
Breast cancer therapy with classical chemotherapy is unable to eradicate breast cancer stem cells (BCSCs). Loss of p53 function causes growth and differentiation in cancer stem cells (CSCs); therefore, p53-targeted compounds can be developed for BCSCs-targeted drugs. Previously, hesperidin (HES), a citrus flavonoid, showed anticancer activities and increased efficacy of chemotherapy in several types of cancer in vitro and in vivo. This study was aimed to explore the key protein and molecular mechanism of hesperidin in the inhibition of BCSCs using bioinformatics and in vitro study. Bioinformatics analysis revealed about 75 potential therapeutic target proteins of HES in BCSCs (TH), in which TP53 was the only direct target protein (DTP) with a high degree score. Furthermore, the results of GO enrichment analysis showed that TH was taken part in the biological process of regulation of apoptosis and cell cycle. The KEGG pathway enrichment analysis also showed that TH is involved in several pathways, including cell cycle, p53 signaling pathway. In vitro experiment results showed that HES inhibited cell proliferation, mammosphere, and a colony formation, and migration in on MCF-7 3D cells (mammospheres). HES induced G0/G1 cell cycle arrest and apoptosis in MCF-7 cells 3D. In addition, HES treatment reduced the mRNA level of p21 but increased the mRNA level of cyclin D1 and p53 in the mammosphere. HES inhibits BCSCs in mammospheres. More importantly, this study highlighted p53 as a key protein in inhibition of BCSCs by HES. Future studies on the molecular mechanism are needed to validate the results of this study.  相似文献   
44.
Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38− cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.  相似文献   
45.
46.
The success of human mesenchymal stem cell (hMSC) therapies is largely dependent on the ability to maintain the multipotency of cells and control their differentiation. External biochemical and biophysical cues can readily trigger hMSCs to spontaneously differentiate, thus resulting in a rapid decrease in the multipotent cell population and compromising their regenerative capacity. Herein, we demonstrate that nonfouling hydrogels composed of pure poly(carboxybetaine) (PCB) enable hMSCs to retain their stem‐cell phenotype and multipotency, independent of differentiation‐promoting media, cytoskeletal‐manipulation agents, and the stiffness of the hydrogel matrix. Moreover, encapsulated hMSCs can be specifically induced to differentiate down osteogenic or adipogenic pathways by controlling the content of fouling moieties in the PCB hydrogel. This study examines the critical role of nonspecific interactions in stem‐cell differentiation and highlights the importance of materials chemistry in maintaining stem‐cell multipotency and controlling differentiation.  相似文献   
47.
丁建勋  常非  王金成 《高分子科学》2014,32(12):1590-1601
Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst. The amphiphilic copolymer self-assembled into micelles in aqueous solutions, and formed hydrogels as the increase of temperature at relatively high concentrations(〉 15 wt%). The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments. The good cellular and tissular compatibilities of the thermogel were demonstrated. The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEGPLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering.  相似文献   
48.
49.
Wound healing, one of the most complex processes of the body involving the cooperation of several important biomolecules and pathways, is one of the major therapeutic and economic issues in regenerative medicine. The present study aimed to introduce a novel electrospun curcumin (Cur)‐incorporated chitosan/polyvinyl alcohol/carbopol/polycaprolactone nanofibrous composite for concurrent delivery of the buccal fat pad‐derived mesenchymal stem cells (BFP‐MSCs) and Cur to a full‐thickness wound on the mouse model. Scaffolds were characterized structurally using scanning electron microscopy (SEM), fluorescence microscopy imaging and Fourier‐transform infrared spectroscopy, and toxicity of the scaffolds was also evaluated after BFP‐MSC seeding by SEM imaging and 3‐(4,5 dimethyiazol‐2‐1)‐2‐5‐diphenyl tetrazolium bromide (MTT) assay. Then, its influence on the wound‐healing process was investigated as a wound dressing for a full‐thickness skin defect in mouse model. Results demonstrated that the designed composite scaffolds have the capability for cell seeding and support their growth and proliferation. Macroscopic and histopathological characteristics were evaluated at the end of the 7 and 14 days after surgery, and their results showed that our designed scaffold groups accelerated the wound‐healing process compared with the control group. Among those, scaffold/Cur, scaffold/Cur/BFP‐MSC and scaffold/BFP‐MSC groups demonstrated more wound repair efficacy. These results indicated that the combined grafts can be used to improve the wound‐healing process, and therefore, the electrospun nanofibers presented in this study, Cur and BFP‐MSC together, were demonstrated to have promising potential for wound‐dressing applications.  相似文献   
50.
In this study the redox activity of human myocardium‐derived mesenchymal stem cells (hmMSC) were investigated by redox‐competition (RC‐SECM) and generation‐collection (GC‐SECM) modes of scanning electrochemical microscopy (SECM), using 2‐methylnaphthalene‐1,4‐dione (menadione, MD) as a redox mediator. The redox activity of human healthy and dilated hmMSCs was evaluated by measuring reduction of MD. Measurements were performed by approaching and retracting the UME from the surface of growing hmMSC cells. The current study shows that the RC‐SECM mode can be applied to investigate integrity of cell membranes, whereas the most promising results were observed by using the GC‐SECM mode and applying the Hill's equation for the calculation/fitting of dependencies of electrical current vs menadione concentration. The calculated apparent Michaelis constant (KM) for the production of menadiol (MDH2) in the pathological hmMSC cells was 14.4 folds higher compared to that of the healthy hmMSC revealing the lover redox activity of pathological cells. Moreover, the calculated Hill's coefficient n shows a negative cooperative binding between MD and healthy hmMSC and positive cooperative binding between MD and pathological hmMSC. It means that healthy hmMSC is of lower affinity to MD, which is also related to the better membrane integrity of healthy cells. Data of this study demonstrate that SECM can be applied to investigate intracellular redox and membrane changes ongoing in human dilated myocardium‐derived hmMSC in order to improve their functioning and further regenerative potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号