首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   66篇
  国内免费   55篇
化学   356篇
力学   19篇
综合类   16篇
数学   39篇
物理学   73篇
综合类   716篇
  2023年   21篇
  2022年   25篇
  2021年   52篇
  2020年   32篇
  2019年   33篇
  2018年   30篇
  2017年   35篇
  2016年   46篇
  2015年   46篇
  2014年   45篇
  2013年   53篇
  2012年   68篇
  2011年   59篇
  2010年   42篇
  2009年   67篇
  2008年   73篇
  2007年   77篇
  2006年   57篇
  2005年   48篇
  2004年   45篇
  2003年   45篇
  2002年   29篇
  2001年   23篇
  2000年   27篇
  1999年   23篇
  1998年   13篇
  1997年   13篇
  1996年   11篇
  1995年   13篇
  1994年   15篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   10篇
  1989年   9篇
  1988年   1篇
  1987年   5篇
  1985年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有1219条查询结果,搜索用时 15 毫秒
31.
Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.  相似文献   
32.
Mesenchymal stem cells (MSC), also called marrow stromal cells, are adult cells that have attracted interest for their potential uses in therapeutic applications. There is a pressing need for scalable culture systems due to the large number of cells needed for clinical treatments. Here, a tailorable thin polymer coating—poly(poly(ethylene glycol) methyl ether methacrylate‐ran‐vinyl dimethyl azlactone‐ran‐glycidyl methacrylate) [P(PEGMEMA‐r‐VDM‐r‐GMA); PVG]—to the surface of commercially available polystyrene and glass microcarriers to create chemically defined surfaces for large‐scale cell expansion is applied. These chemically defined microcarriers create a reproducible surface that does not rely on the adsorption of xenogenic serum proteins to mediate cell adhesion. Specifically, this coating method anchors PVG copolymer through ring opening nucleophilic attack by amine residues on poly‐l ‐lysine that is pre‐adsorbed to the surface of microcarriers. Importantly, this anchoring reaction preserves the monomer VDM reactivity for subsequent functionalization with an integrin‐specific Arg‐Gly‐Asp peptide to enable cell adhesion and expansion via a one‐step reaction in aqueous media. MSCs cultured on PVG‐coated microcarriers achieve sixfold expansion—similar to the expansion achieved on PS microcarriers—and retain their ability to differentiate after harvesting.  相似文献   
33.
In this paper, we classify all capable nilpotent Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field. Moreover, the explicit structure of such Lie algebras of class 3 is given.  相似文献   
34.
Cancer stem cells (CSC) constitute a cell subpopulation in solid tumors that is responsible for resistance to conventional chemotherapy, metastasis and cancer relapse. The natural product Salinomycin can selectively target this cell niche by directly interacting with lysosomal iron, taking advantage of upregulated iron homeostasis in CSC. Here, inhibitors of the divalent metal transporter 1 (DMT1) have been identified that selectively target CSC by blocking lysosomal iron translocation. This leads to lysosomal iron accumulation, production of reactive oxygen species and cell death with features of ferroptosis. DMT1 inhibitors selectively target CSC in primary cancer cells and circulating tumor cells, demonstrating the physiological relevance of this strategy. Taken together, this opens up opportunities to tackle unmet needs in anti-cancer therapy.  相似文献   
35.
Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer‐by‐layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4‐styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g?1, which is lower than the 7–22 emu g?1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.  相似文献   
36.
37.
The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and found that the transplanted animals exhibited significant improvements in sensorimotor functions during the 8 weeks after transplantation. Taken together, these results strongly suggest that hESC-NPCs have the capacity to migrate to the infarct region, form neural tissues efficiently and contribute to behavioral recovery in a rodent model of ischemic stroke.  相似文献   
38.
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.  相似文献   
39.
40.
The in vitro viability, osteogenic differentiation, and mineralization of four different equine mesenchymal stem cells (MSCs) from bone marrow, periosteum, muscle, and adipose tissue are compared, when they are cultured with different collagen‐based scaffolds or with fibrin glue. The results indicate that bone marrow cells are the best source of MSCs for osteogenic differentiation, and that an electrochemically aggregated collagen gives the highest cell viability and best osteogenic differentiation among the four kinds of scaffolds studied.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号