首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5994篇
  免费   609篇
  国内免费   562篇
化学   2752篇
晶体学   113篇
力学   217篇
综合类   41篇
数学   30篇
物理学   903篇
综合类   3109篇
  2024年   13篇
  2023年   51篇
  2022年   105篇
  2021年   135篇
  2020年   147篇
  2019年   132篇
  2018年   132篇
  2017年   148篇
  2016年   220篇
  2015年   227篇
  2014年   225篇
  2013年   360篇
  2012年   361篇
  2011年   319篇
  2010年   268篇
  2009年   322篇
  2008年   305篇
  2007年   384篇
  2006年   365篇
  2005年   293篇
  2004年   306篇
  2003年   303篇
  2002年   288篇
  2001年   230篇
  2000年   216篇
  1999年   155篇
  1998年   150篇
  1997年   128篇
  1996年   145篇
  1995年   133篇
  1994年   122篇
  1993年   102篇
  1992年   80篇
  1991年   66篇
  1990年   63篇
  1989年   48篇
  1988年   40篇
  1987年   21篇
  1986年   14篇
  1985年   14篇
  1984年   5篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
  1973年   3篇
  1972年   1篇
  1955年   3篇
排序方式: 共有7165条查询结果,搜索用时 625 毫秒
241.
Structural constraint represents an attractive tool to modify p-block element properties without the need for unusual oxidation or valence states. The recently reported methyl-calix[4]pyrrolato aluminate established the effect of forcing a tetrahedral aluminum anion into a square-planar coordination mode. However, the generality of this structural motif and any consequence of ligand modification remained open. Herein, a systematic ligand screening was launched, and the class of square-planar aluminum anions was extended by two derivatives that differ in the meso-substitution at the calix[4]pyrrolato ligand. Strikingly, this modification provoked opposing trends in the preference for a Lewis acidic binding mode with σ-donors versus the aluminum-ligand cooperative binding mode with carbonyls. Insights into the origin of these counterintuitive experimental observations were provided by computation and bond analysis. Importantly, this rationale might allow to exploit mode-selective binding for catalytic rate control.  相似文献   
242.
243.
Asymmetric 1,2-additions of cyanide yield enantioenriched cyanohydrins as versatile chiral building blocks. Next to HCN, volatile organic cyanide sources are usually used. Among them, cyanoformates are more attractive on technical scale than TMSCN for cost reasons, but catalytic productivity is usually lower. Here, the development of a new strategy for cyanations is described, in which this activity disadvantage is overcome. A Lewis acidic Al center cooperates with an aprotic onium moiety within a remarkably robust bifunctional Al–F–salen complex. This allowed for unprecedented turnover numbers of up to 104. DFT studies suggest an unexpected unique trimolecular pathway in which the ammonium bound cyanide attacks the aldehyde, which itself is activated by the carbonyl group of the cyanoformate binding to the Al center. In addition, a novel practical carboxycyanation method was developed that makes use of KCN as the sole cyanide source. The use of a pyrocarbonate as carboxylating reagent provided the best results.  相似文献   
244.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
245.
A series of novel diaroylhydrazone aluminum complexes have been synthesized and well-defined structurally, and their catalytic performance in the polymerization of ε-caprolactone and lactides have also been evaluated. Complexes [(L1–4)2AlMe] ( 1 – 4 ) {[L1 = (3,5-tBu2–2-OMe-C6H2)CH=NNCOC6H5], [L2 = (3,5-tBu2–2-OMe-C6H2)CH=NNCO(C6H4–4-OCH3)], [L3 = (3,5-tBu2–2-OMe-C6H2)CH=NNCO(C6H4–4-Br)] and [L4 = (2-OMe-C6H4)CH=NNCO(C6H4–4-tBu)]} were prepared through treatment of AlMe3 with the corresponding proligands L1–4H in molar ratios of 1: 1 or 1: 2. Chemical structures of all the complexes were well-defined by elemental analysis, NMR spectra as well as single-crystal X-ray study. Complexes [(L1–4)2AlMe] ( 1 – 4 ) in this work represent the first examples of aluminum complexes of aroylhydrazone ligands with crystallographic characterization. Specifically, they are all in monomeric form with a penta-coordinated aluminum center, including two approximately co-planar five-membered metallacycles with aluminum. Introduced bulky tert-butyl substituents in aroylhydrazone ligands could affect the geometry around the central metal which is a distorted square-based pyramid in complexes 1 – 3 while being a trigonal bipyramidal in complex 4 , thus affecting their catalytic behaviors. The complexes can successfully catalyze the ring-opening polymerization of ε-caprolactone and L-lactide under mild conditions without any activator. In addition, complexes 1 – 4 could also polymerize rac-lactide, affording atactic polylactides with high conversions and good controllability in relatively short reaction time.  相似文献   
246.
Oligonucleic acids (ONAs), such as DNA and RNA, are used in various biotechnology and nanotechnology applications due to their ability to form a double helix that is stable at low temperature and melts at high temperatures. The melting temperature (Tm) of ONA duplexes can be tuned by the ONA composition, sequence, length and concentration, solvent quality, and salt concentration and by conjugation to other macromolecules. In this article, we use coarse‐grained (CG) molecular simulations to study ONAs conjugated with linear homopolymers that are relatively more solvophobic than the ONA. We study charged and stiff 8‐mer ONAs (e.g., DNA) and neutral and flexible 8‐mer ONAs (e.g., peptide nucleic acids or PNA), and vary the composition (or G‐C content) and sequence of ONA, conjugated homopolymer lengths and solvent quality for the polymer. For neutral and flexible ONAs, as the solvent quality worsens for the polymer, the ONA melting temperature increases from that of unconjugated ONA. The melting curves broaden with polymer length and worsening solvent quality, especially for ONAs with higher G‐C content. For charged and stiff ONAs, as the solvent quality worsens, the ONA melting temperature decreases compared to unconjugated ONA while the width of the melting curve remains the same. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1196–1208  相似文献   
247.
248.
Understanding the key steps that drive the laser-based synthesis of colloids is a prerequisite for learning how to optimize the ablation process in terms of nanoparticle output and functional design of the nanomaterials. Even though many studies focus on cavitation bubble formation using single-pulse ablation conditions, the ablation efficiency and nanoparticle properties are typically investigated under prolonged ablation conditions with repetition rate lasers. Linking single-pulse and multiple-pulse ablation is difficult due to limitations induced by gas formation cross-effects, which occur on longer timescales and depend on the target materials’ oxidation-sensitivity. Therefore, this study investigates the ablation and cavitation bubble dynamics under nanosecond, single laser pulse conditions for six different bulk materials (Au, Ag, Cu, Fe, Ti, and Al). Also, the effective threshold fluences, ablation volumes, and penetration depths are quantified for these materials. The thermal and chemical properties of the corresponding bulk materials not only favor the formation of larger spot sizes but also lead to the highest molar ablation efficiencies for low melting materials such as aluminum. Furthermore, the concept of the cavitation bubble growth linked with the oxidation sensitivity of the ablated material is discussed. With this, evidence is provided that intensive chemical reactions occurring during the very early timescale of ablation are significantly enhanced by the bubble collapse.  相似文献   
249.
《Analytical letters》2012,45(18):2892-2904
A spectrofluorimetric method has been developed for trace amount of aluminum(III) by using a novel Schiff base, N,N′-bis(salicylidene)-1,4-diaminobuthane (BUTAS), and 4-methyl-2-aminophenol (OAP). Since the aluminum complexes are generally fluorescent, aluminum(III) increases the fluorescence intensity of BUTAS-OAP by formation of Al-BUTAS-OAP complex. The fluorescence of the complex is measured at an excitation wavelength of 410 nm with an emission at 526 nm. Aluminum(III) can be detected within a concentration limit of 0.11–1.62 ppb and the lowest detection limit being 0.07 ppb. The proposed method was applied to diluted hemodialysis solution and spectrofluorimetric data was compared with data of standard pharmacopoeia method.  相似文献   
250.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号