首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   18篇
  国内免费   10篇
力学   144篇
数学   12篇
物理学   40篇
综合类   86篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   16篇
  2013年   21篇
  2012年   16篇
  2011年   33篇
  2010年   11篇
  2009年   16篇
  2008年   12篇
  2007年   13篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1957年   1篇
排序方式: 共有282条查询结果,搜索用时 0 毫秒
1.
基于超音速气动力活塞理论,采用第二类拉格朗日方程建立了带外挂二元翼系统在超音速和超高音速气流作用下的动力学方程。针对外挂上带有立方非线性刚度的系统,研究了刚心位置和等效线性刚度对颤振边界的影响。采用中心流形和形式级数方法研究了颤振系统平衡点的稳定性,并采用四阶龙格-库塔方法计算了非线性气动弹性系统的响应,验证了理论分析结果的正确性。  相似文献   
2.
贾勇  孙刚  刘苏 《力学季刊》2007,28(2):223-227
波阻是飞行器超音速飞行的关键设计因素,精确捕捉激波在流场中的位置,是数值模拟含激波流场和精确计算波阻的一个重要研究内容.本文基于网格节点有限体积空间离散方法,采用AUSM格式与FVS格式的混合格式(MAUSM方法)计算对流通量,从而抑制在数值模拟流场出现的激波处振荡和过冲现象,确保AUSM准确捕获接触间断的特性和FVS格式捕捉激波的能力.本文使用MAUSM方法分别计算了在跨声速和超声速条件下的NACA0012翼型流场,并与中心差分格式的计算结果进行比较.结果表明,对于存在激波的翼型流场,MAUSM方法是有效的.  相似文献   
3.
机翼颤振的非线性动力学和控制研究   总被引:5,自引:0,他引:5  
介绍应用现代非线性动力学和控制的理论和方法对机翼颤振问题进行的一些研究,主要包括3部分:①针对用活塞理论建立的(高)超音速流中机翼的颤振方程,首先进行稳定性分析,证明Hopf分岔导致系统颤振失稳.然后应用规范型直接法推导出Hopf分岔的规范型,分析其系数表明,随着飞行马赫数提高,Hopf分岔由超临界形式变成亚临界形式,对结构的危害性增大;②针对不可压缩流中具有立方非线性俯仰刚度的二元机翼颤振,应用wash-OUt滤波器技术进行主动控制.对于引入的wash-out滤波控制器,先按Hopf分岔条件确定线性控制增益,再用规范型直接法得到受控系统的规范型,由分岔类型与规范型系数的关系确定非线性控制增益,从而可以将危害性较大的亚临界Hopf分岔变为危害性较小的超临界Hopf分岔;③基于空间Poincare百截面并引入轨迹追踪技术,改进胞映射方法,分析初始条件对含双线性结构刚度因素的机翼颤振的影响.结果显示,初始条件对系统动力学行为有着很大的影响.当两段刚度之比小于某临界值时,不同的初始条件会导致平衡点、极限环振动、复杂的周期运动、混沌和发散运动等不同的运动形式.  相似文献   
4.
翼型表面粗糙度是影响翼型气动特性的主要因素之一.基于N-S控制方程,选择Spalart-Almaras湍流模型,在雷诺数Re=2X106的条件下,应用FLUENT软件数值模拟粗糙度对S827翼型气动特性的影响.光滑翼型和表面有凸台翼型在不同攻角下的升力系数、阻力系数和表面压强的分布对比分析表明,分布在翼型吸力面前缘的凸...  相似文献   
5.
考虑鲁棒性的超临界翼型激波控制鼓包减阻研究   总被引:1,自引:0,他引:1  
本文主要采用CFD方法研究超临界翼型的激波控制鼓包减阻技术,分析了鼓包形状参数对减阻效果和鲁棒性的影响规律.计算结果显示,鼓包的减阻效果受位置影响较大,当鼓包最高点与干净翼型的激波位置相同时减阻效果较好,鼓包高度过高对减阻效果不利,而较长的鼓包可在更大的高度范围内实现减阻.鼓包还可以通过弱化激波,抑制附面层分离,延缓超临界翼型抖振现象的发生.计算结果显示,鼓包减阻技术整体而言工作范围较窄.但经过设计,较长且较低的鼓包可以在较大的升力范围内具有减阻效果,并且减阻效果对形状变化及雷诺数变化不敏感,还能有效提高阻力发散马赫数,鲁棒性要明显优于较短较高的鼓包,具有工程应用的潜力.  相似文献   
6.
本文从吹风实验及数据分析两方面来研究等厚薄板翼型的气动力特性。在实验中对单园弧、双圆弧、抛物线三种类型的薄板翼型进行了孤立翼型的吹风试验,得出了各翼型升力系数,阻力系数随冲角变化的结果。然后利用非交错网格下的SIMPLE方法,计算了等厚薄板翼型流场,计算结果和实验结果吻合较好。  相似文献   
7.
When solving unsteady computational fluid dynamics problems in aerodynamics with a gridless method, a cloud of points is usually required to be regenerated due to its accommodation to moving boundaries. In order to handle this problem conveniently, a fast dynamic cloud method based on Delaunay graph mapping strategy is proposed in this paper. A dynamic cloud method makes use of algebraic mapping principles and therefore points can be accurately redistributed in the flow field without any iteration. In this way, the structure of the gridless clouds is not necessarily changed so that the clouds regeneration can be avoided successfully. The spatial derivatives of the mathematical modeling of the flow are directly determined by using weighted least‐squares method in each cloud of points, and then numerical fluxes can be obtained. A dual time‐stepping method is further implemented to advance the two‐dimensional Euler equations in arbitrary Lagarangian–Eulerian formulation in time. Finally, unsteady transonic flows over two different oscillating airfoils are simulated with the above method and results obtained are in good agreement with the experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
8.
在定常、有势、不可压流的前提下,对由回转体、附体围壳、十字翼和环形翼组成的潜体的水动力导数,采用奇点分布法进行了计算.计算中在潜体表面布置源汇和偶极子以模拟厚度影响及升力效应,并探讨了封闭体奇导性问题的解决方法,计算值与试验结果符合良好.在展弦比相同时,环翼升力线斜率是平面无后掠翼的两倍.  相似文献   
9.
本文给出一种用单圆弧拟合方法,以解决用数控线切割机模拟加工飞机机翼型廓线问题.  相似文献   
10.
针对飞机飞行时机翼振动问题,研究了在不可压缩流中有立方非线性刚度二元机翼颤振系统的局部分岔,取空气速度和线性俯仰刚度系数作为分岔参数.采用后继函数法对降维后求得系统分岔点类别进行定性分析,结果表明3个分岔点都为稳定的焦点.对分岔点处中心流形约化方程进行化简得到霍普分岔的A规范形,研究了系统参数对极限环颤振的稳定性及幅值的影响,得到了机翼颤振系统在普适开折参数平面的分岔图.发现了抑制颤振振幅和临界颤振速度大小的系统敏感参数,提出了降低颤振幅值和避免不稳定极限环运动的措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号