首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1051篇
  免费   12篇
  国内免费   208篇
化学   641篇
晶体学   1篇
力学   38篇
综合类   1篇
数学   282篇
物理学   90篇
综合类   218篇
  2024年   3篇
  2023年   44篇
  2022年   14篇
  2021年   14篇
  2020年   20篇
  2019年   16篇
  2018年   13篇
  2017年   34篇
  2016年   33篇
  2015年   21篇
  2014年   41篇
  2013年   81篇
  2012年   48篇
  2011年   70篇
  2010年   70篇
  2009年   83篇
  2008年   86篇
  2007年   67篇
  2006年   57篇
  2005年   52篇
  2004年   43篇
  2003年   40篇
  2002年   31篇
  2001年   32篇
  2000年   19篇
  1999年   28篇
  1998年   29篇
  1997年   30篇
  1996年   18篇
  1995年   12篇
  1994年   21篇
  1993年   19篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1271条查询结果,搜索用时 9 毫秒
41.
SynthesesandStudiesofPEG┐b┐PNIPABlockPolymersCAOWei-xiao**andZHANGTao(ColegeofChemistryandMolecularEnginering,PekingUniversit...  相似文献   
42.
Poly(methyl acrylate)-b-poly(5,6-benzo-2-methylene-1, 3-dioxepane) (PMA-b-PBMDO) was synthesized by two-step atom transfer radical polymerization (ATRP). Firstly, ATRP of methyl acrylate (MA) was realized using ethyl α-bromobutyrate (EBrB) as initiator in the presence of CuBr/2,2'-bipyridine. After isolation, poly(methyl acrylate) withterminal bromine (PMA-Br) was synthesized. Secondly, the resulting PMA-Br was used as a macromolecular initiator in theATRP of BMDO. The Structure of block copolymer was characterized by ~1H-NMR spectroscopy. Molecular weight andmolecular weight distribution were determined on a gel permeation chromatograph (GPC).  相似文献   
43.
《中国化学快报》2020,31(6):1660-1664
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc) amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT) dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide) trithiocarbonate(PDMAc-TTC-PDMAc) bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs) wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm) and vesicles with HHHs features were also synthesized in high solid content systems(30 wt% and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.  相似文献   
44.
The ozone etching of thin films of a commercial polystyrene-polyisoprene-polystyrene (PS-PI-PS) triblock copolymer (Vector 4111) was studied using atomic force microscopy (AFM) and ellipsometry. The major phase of the copolymer consists of PI (82 wt.%) and the copolymer forms a cylindrical structure upon annealing. Moderate ozone doses (1.4% wt/wt) were used to etch the copolymer. This revealed two stages of the ozonation: rapid etching of the PI fragments followed by slow compacting of the remaining PS cylinders. Under certain conditions ozone treatment results in the formation of nanosized grooves in a PS matrix which is suitable for lithographic processes.  相似文献   
45.
Metallo-supramolecular diblock copolymers consisting of a polystyrene (PS) block connected to a poly(ethylene oxide) (PEO) block by a bis(terpyridine)ruthenium complex (PS20-[Ru]-PEO y ) were used to prepare aqueous micelles. The length of the PS block was kept constant, while two PEOs of different molecular weight were used. The resulting hydrated micelles and aggregates were characterized by a combination of cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering measurements. The results were compared to those obtained for a covalent counterpart (PS22-b-PEO70). Cryogenic transmission electron microscopy allowed visualization of the PS core of the micelles. Moreover, the aggregates result from clustering of individual micelles.  相似文献   
46.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   
47.
Nano cellulose particles covered with a block copolymer of microcrystalline cellulose and poly(methyl methacrylate) (MCC-block-PMMA) were produced by a solid mechano-chemical polymerization. The polymerization of methyl methacrylate was initiated by chain-end-type microcrystalline cellulose (MCC) radicals (i.e., MCC mechano radicals) on the surface of MCC that were induced by mechanical fracture of β-1,4 glycosidic linkages. The chemically modified cellulose particles with MCC-block-PMMA were fractionated by Soxhlet extraction with chloroform, and resulted in MCC-block-PMMA residue from residue on the filter and MCC-block-PMMA filtrate from filtrate solution. The surface of the MCC particles chemically modified with MCC-block-PMMA in MCC-block-PMMA residue was partially covered with PMMA chains of the MCC-block-PMMA. In contrast, the surfaces of the MCC nanoparticles chemically modified with MCC-block-PMMA in MCC-block-PMMA filtrate were fully covered with PMMA chains of the MCC-block-PMMA. A dispersion of the chemically fully modified MCC nanoparticles in chloroform was optically transparent. The average diameter of the chemically fully modified MCC nanoparticles in chloroform was estimated to be 52 nm. These were confirmed by electron spin resonance, Fourier transform infrared, and 1H nuclear magnetic resonance spectroscopy, by gel permeation chromatography and dynamic light scattering.  相似文献   
48.
In the last few years, polymer bioconjugates have been shown to be useful in many emerging areas of materials science. Consequently, the synthesis of polymer bioconjugates has suddenly become a central topic in polymer chemistry. The versatility and robust nature of modern synthetic methods such as controlled radical polymerisation (CLRP),1 ring-opening polymerisation (ROP), and ‘click’ chemistry make them excellent tools for the preparation of tailor-made polymer bioconjugates. CLRP in combination with other techniques has been shown to be a mature technology for building tailor-made block copolymers and protein–polymer conjugates with a wide range of applications, especially in biomedical domains. This review describes the recent advances and progress in the rapidly expanding field of bioconjugation, outlining the work performed up to 2012.  相似文献   
49.
The aim of this contribution was the study of the influence of polymer matrix on the photo-induced orientation of azobenzene groups. Notably, an azo-prepolymer bearing hydroxyl groups was selectively confined in self-assembled phases of different block copolymers, randomly-epoxidized polystyrene-b-polybutadiene-b-polystyrene (SBSep) and polystyrene-b-poly-4-vinylpyridine (S4VP). The formation of hydrogen bonds between the azo-prepolymer and poly-4-vinylpyridine block, as well as the effect of the local environment surrounding the azo-prepolymer were investigated by Fourier transform infrared and ultraviolet–visible spectroscopies. In addition, the reversible optical storage properties of the developed materials were also studied. Birefringent properties of the systems based on S4VP were strongly enhanced by intermolecular interactions with the azo-prepolymer. Specifically, the maximum birefringence level attained by a system containing 13 wt% of azobenzene was around 2.3 × 10−2 and its remaining birefringence was nearly three times higher than that of the neat azo-prepolymer. Furthermore, a morphological analysis of the designed materials was carried out by atomic force microscopy. Taking into account that the control of the microdomains ordering in block copolymer films is of current interest, special attention was focused on the influence of different variables on the arrangement of the block copolymer microdomains.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号