首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   11篇
  国内免费   13篇
化学   81篇
力学   230篇
综合类   1篇
数学   91篇
物理学   41篇
综合类   25篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   16篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   14篇
  2015年   18篇
  2014年   21篇
  2013年   22篇
  2012年   11篇
  2011年   33篇
  2010年   20篇
  2009年   42篇
  2008年   39篇
  2007年   28篇
  2006年   25篇
  2005年   16篇
  2004年   24篇
  2003年   7篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
41.
In a previous work, we have shown that chitosan true physical gelation occurs in some organic and inorganic acids (Hamdine et al. 2004). Two systems presenting similar gelation mechanisms were characterized furthermore in order to investigate the sol–gel transition: the chitosan–phosphoric acid and the chitosan–oxalic acid systems. By performing rheological measurements in the framework of linear viscoelasticity, we have investigated the effect of time, temperature, and polymer concentration on the gelation evolution. For both acid-based systems, gelation occurred above a critical polymer concentration around 5% w/v (g/100 ml) of chitosan. Isothermal time sweep experiments showed that the gelation occurs in three stages: (i) incubation; (ii) rapid increase of G′; and (iii) a last stage where G′ slowly reached its equilibrium value due to slow molecular diffusion. At the gel point, G′ and G′′ scaled with ω n , with n=0.55 for both acid-based systems and a fractal dimension d f of 1.9. Cooling–heating cycles revealed that the gels showed thermoreversibility after one sequence, but became permanent during subsequent cycles.This revised version was published online in October 2005 with corrections to the author's name.  相似文献   
42.
We present the results of some numerical experiments which were carried out in order to investigate the general characteristics of the algorithm described in Part I of this paper.  相似文献   
43.
A dual-beam transient absorption spectrometer for high repetition rate (80 shocks per second) studies of shock compressed materials is described. The apparatus time response is 100 ps, so the time resolution of the shock compression process is generally limited by the shock transit time across the sample. In turn the sample thickness is limited by the sensitivity of the spectrometer. Using 400 nm thick samples of R640 dye aggregates in \textit{poly} methyl methacrylate (PMMA) and a 4.2 GPa laser-driven shock, transient absorption spectra show a shock induced absorption redshift occurring in 500 ps, considerably longer than the 200 ps shock front transit time (round trip) through the sample. This noninstantaneous shock compression is consistent with the $\sim 300$ ps viscoelastic response of PMMA at 4.2 GPa. Received 30 July 2001 / Accepted 13 March 2002 – Published online 17 June 2002  相似文献   
44.
To facilitate practical medical applications such as cancer treatment utilizing focused ultrasound and bubbles, a mathematical model that can describe the soft viscoelasticity of human body, the nonlinear propagation of focused ultrasound, and the nonlinear oscillations of multiple bubbles is theoretically derived and numerically solved. The Zener viscoelastic model and Keller–Miksis bubble equation, which have been used for analyses of single or few bubbles in viscoelastic liquid, are used to model the liquid containing multiple bubbles. From the theoretical analysis based on the perturbation expansion with the multiple-scales method, the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation, which has been used as a mathematical model of weakly nonlinear propagation in single phase liquid, is extended to viscoelastic liquid containing multiple bubbles. The results show that liquid elasticity decreases the magnitudes of the nonlinearity, dissipation, and dispersion of ultrasound and increases the phase velocity of the ultrasound and linear natural frequency of the bubble oscillation. From the numerical calculation of resultant KZK equation, the spatial distribution of the liquid pressure fluctuation for the focused ultrasound is obtained for cases in which the liquid is water or liver tissue. In addition, frequency analysis is carried out using the fast Fourier transform, and the generation of higher harmonic components is compared for water and liver tissue. The elasticity suppresses the generation of higher harmonic components and promotes the remnant of the fundamental frequency components. This indicates that the elasticity of liquid suppresses shock wave formation in practical applications.  相似文献   
45.
A material force method is proposed for evaluating the energy release rate and work rate of dissipation for fracture in inelastic materials. The inelastic material response is characterized by an internal variable model with an explicitly defined free energy density and dissipation potential. Expressions for the global material and dissipation forces are obtained from a global balance of energy-momentum that incorporates dissipation from inelastic material behavior. It is shown that in the special case of steady-state growth, the global dissipation force equals the work rate of dissipation, and the global material force and J-integral methods are equivalent. For implementation in finite element computations, an equivalent domain expression of the global material force is developed from the weak form of the energy-momentum balance. The method is applied to model problems of cohesive fracture in a remote K-field for viscoelasticity and elastoplasticity. The viscoelastic problem is used to compare various element discretizations in combination with different schemes for computing strain gradients. For the elastoplastic problem, the effects of cohesive and bulk properties on the plastic dissipation are examined using calculations of the global dissipation force.  相似文献   
46.
A semi-infinite crack growing along a straight line in an unbounded triangular-cell lattice and in lattice strips is under examination. Elastic and standard-material viscoelastic lattices are considered. Using the superposition similar to that used for a square-cell lattice (J. Mech. Phys. Solids 48 (2000) 927) an irregular stress distribution is revealed on the crack line in mode II: the strain of the crack-front bond is lower than that of the next bond. A further notable fact about mode II concerns the bonds on the crack line in the lattice strip deformed by a ‘rigid machine’. If the alternate bonds, such that are inclined differently than the crack-front bond, are removed, the stresses in the crack-front bond and in the other intact bonds decrease. These facts result in irregular quasi-static and dynamic crack growth. In particular, in a wide range of conditions for mode II, consecutive bond breaking becomes impossible. The most surprising phenomenon is the formation of a binary crack consisting of two branches propagating on the same line. It appears that the consecutive breaking of the right-slope bonds—as one branch of the crack—can proceed at a speed different from that for the left-slope bonds—as another branch. One of these branches can move faster than the other, but with time they can change places. Some irregularities are observed in mode I as well. Under the influence of viscosity, crack growth can be stabilized and crack speed can be low when viscosity is high; however, in mode II irregularities in the crack growth remain. It is found that crack speed is a discontinuous function of the creep and relaxation times.  相似文献   
47.
The aim of this study was to measure the thermal properties of foamed nano/macro filler–reinforced styrene maleic anhydride (SMA) composites. SMA (66%) as a polymer matrix (10% maleic anhydride content) and various fillers including wood flour, starch, α-cellulose, microcrystalline cellulose and cellulose nanofibrils as reinforcing agents (30%) and lubricant (4%) were used to manufacture the composites in a twin-screw extruder. According to the thermogravimetric analysis (TGA) results, thermal degradation of all the foamed composites was found to be lower than that of SMA composites. The storage modulus values were negatively affected with a second time foaming (reprocessing [recycling] the initially processed composites a second time), as were loss modulus and Tg. As a result, second-time-foamed composite modulus values were lower than those of the foamed composites. According to the melt flow index (MFI) results, viscosity of the SMA was found to increase with the addition of fillers.  相似文献   
48.
The overall objective of this work was to study the effect of reprocessing cycles of isotactic polypropylene (PP) on the rheological behavior and microstructure of gel-like dispersions in mineral oil. PP was subjected to 10 reprocessing cycles and oleogel samples were further prepared by using the mixing rheometry technique and characterized from a rheological point of view and polarized light optical microscopy (PLOM). Recycled polymer samples were also characterized by means of rheological measurements, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to evaluate the property changes induced by reprocessing. The values of different linear viscoelastic functions (elastic modulus and complex viscosity) of recycled PP decrease with the number of reprocessing cycles, which influences oleogel rheological response. An empirical exponential correlation between the storage modulus (G′) of PP samples and the plateau modulus (GNo) of oleogels has been proposed to predict the rheological behavior of oleogels. Results were explained considering the scission of PP chains induced by the thermomechanical reprocessing treatment applied.  相似文献   
49.
以交联密度不同的同类轮胎胎面胶A1和A2为研究对象,通过动态拉伸实验得到储能模量及损耗模量随频率变化的曲线.建立了黏弹性广义Maxwell模型来定量分析不同温度的橡胶在不同频率的动态载荷下的能量损耗.采用非线性规划的方法分别在低频(10~25 Hz)及高频(25~60 Hz)下拟合模量-频率曲线,得到黏弹性广义Maxwell模型的参数值.采用有限元软件Abaqus模拟胎面胶动态拉伸过程并计算胎面胶的损耗角正切,得到不同温度下胎面胶的损耗角正切随激振频率的变化规律,通过和实验结果的比较证明文中所述黏弹性广义Maxwell模型及其参数获取方法可准确应用于胎面胶的动态拉伸性能分析.预测了在不同温度及频率下每一循环载荷周期中胎面胶的应力-应变迟滞回线以及单位体积胶料的能量损耗,阐释了不同温度下的胎面胶的能量损耗随频率的变化规律,同时结合2种胎面胶的交联密度测试数据分析了胶料的构效关系.  相似文献   
50.
When using a classical SHPB (split Hopkinson pressure bar) set-up, the useful measuring time is limited by the length of the bars, so that the maximum strain which can be measured in material testing applications is also limited. In this paper, a new method with no time limits is presented for measuring the force and displacement at any station on a bar from strain or velocity measurements performed at various places on the bar. The method takes the wave dispersion into account, as must inevitably be done when making long time measurements. It can be applied to one-dimensional and single-mode waves of all kinds propagating through a medium (flexural waves in beams, acoustic waves in wave guides, etc.). With bars of usual sizes, the measuring time can be up to 50 times longer than the time available with classical methods. An analysis of the sensitivity of the results to the accuracy of the experimental data and to the quality of the wave propagation modelling was also carried out. Experimental results are given which show the efficiency of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号