首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   12篇
  国内免费   13篇
化学   81篇
力学   230篇
综合类   1篇
数学   91篇
物理学   42篇
综合类   25篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   16篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   14篇
  2015年   18篇
  2014年   21篇
  2013年   22篇
  2012年   11篇
  2011年   33篇
  2010年   20篇
  2009年   42篇
  2008年   39篇
  2007年   28篇
  2006年   25篇
  2005年   16篇
  2004年   24篇
  2003年   7篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
排序方式: 共有470条查询结果,搜索用时 9 毫秒
381.
Linear and weakly non-linear analyses of convection in a second-order fluid is investigated. The Rivlin-Ericksen constitutive equation is considered to give viscoelastic correction to the momentum equation. The linear and non-linear analyses are, respectively, based on the normal mode technique and truncated representation of Fourier series. The linear theory reveals that the critical eigenvalue is independent of viscoelastic effects and the principle of exchange of stabilities holds. An autonomous system of differential equations representing cellular convection arising in the non-linear study is solved numerically. The non-linear analysis reveals that finite amplitudes have random behaviour. The effect of viscoelasticity on the non-linear solutions is analysed by considering different projections in the phase-space. Also, the transient behaviour concerning the variations of the Nusselt number with time has been investigated. The onset of chaotic motion is also discussed in this paper.  相似文献   
382.
The mechanical response of two natural rubber compounds is examined in order to determine relevant material parameters by non-linear finite element analysis. The materials are subjected to (a) combined static torsion and extension, and (b) small, steady-state torsional oscillations superposed on a large static simple extension. The materials are assumed to be incompressible and isotropic in their undeformed state and a time-strain separable relaxation modulus tensor is employed in order to characterize the steady-state harmonic viscoelastic response. The combined static torsion and extension experiments are used to determine the basic delayed elastic response functions. A Rivlin-type strain energy expression of third-order accuracy is used for the purpose. The two-constant, Mooney-Rivlin form is found to be adequate for both materials in the relatively limited range of deformation magnitudes considered.The torsional storage and loss moduli are determined under quasistatic conditions as functions of frequency and axial static pre-strain. The time-strain separability is found to be a resonable approximation in a relatively limited range of static prestrain magnitudes and frequencies considered for the natural gum rubbers investigated. The experimental methodology is discussed in some detail.  相似文献   
383.
A numerical solution is provided for the three-dimensional flow of an upper-convected Maxwell model in a journal bearing, operating under static loading conditions. Realistic values are taken for the material parameters and the geometrical and flow variables. It is concluded that a relaxation time of the order of 10–4 s is required before viscoelasticity results in a practically-important increase in load-bearing capacity. This conclusion is unchanged if fluid inertia is included in the analysis; it is also effectively independent of the L/D ratio of the bearing.Dedicated to Professor Arthur S. Lodge on the occasion of his 70th birthday and his retirement from the University of Wisconsin.  相似文献   
384.
In this paper earlier work on run-up in a Maxwellian fluid contained between infinite parallel plates is extended. The velocity distributions associated with the various waves propagating into the fluid from the boundaries and reflected back and forth at them are calculated.  相似文献   
385.
386.
This study presents a phenomenological constitutive model for describing response of solid-like viscoelastic polymers undergoing degradation. The model is expressed in terms of recoverable and irrecoverable time-dependent parts. We use a time-integral function with a nonlinear integrand for the recoverable part and another time-integral function is used for the irrecoverable part, which is associated with the degradation evolution in the materials. Here, the degradation is attributed to the secondary and tertiary creep stages. An ‘internal clock’ concept in viscoelastic materials is used to incorporate the accelerated failure in the materials at high stress levels. We ignore the effect of heat generation due to the dissipation of energy and possible healing in predicting the long-term and failure response of the polymeric materials. Experimental data on polymer composites reported by Drozdov (2011) were used to characterize the material parameters and validate the constitutive model. The model is shown capable of predicting response of the polymer composites under various loading histories: creep, relaxation, ramp loading with a constant rate, and cyclic loadings. We observed that the failure time and number of cycles to failure during cyclic loadings are correlated to the duration of loading and magnitude of the prescribed mechanical loads. A scalar degradation variable is also introduced in order to determine the severity of the degradation in the materials, which is useful to predict the lifetime of the structures subject to various loading histories during the structural design stage.  相似文献   
387.
This paper presents a series solution for the homogenization problem of a linear viscoelastic periodic incompressible composite. The method uses the Laplace transform and the correspondence principle which are combined with the classical expansion along Neumann series of the solution of the periodic elasticity problem in Fourier space. The terms of the Neumann series appear as decoupled, containing geometry dependent terms and viscoelastic properties dependent terms which are polynomial fractions whose inverse Laplace transforms are provided explicitly.  相似文献   
388.
A striking difference between the conventional local and nonlocal dynamical systems is that the later possess finite asymptotic frequencies. The asymptotic frequencies of four kinds of nonlocal viscoelastic damped structures are derived, including an Euler–Bernoulli beam with rotary inertia, a Timoshenko beam, a Kirchhoff plate with rotary inertia and a Mindlin plate. For these undamped and damped nonlocal beam and plate models, the analytical expressions for the asymptotic frequencies, also called the maximum or escape frequencies, are obtained. For the damped nonlocal beams or plates, the asymptotic critical damping factors are also obtained. These quantities are independent of the boundary conditions and hence simply supported boundary conditions are used. Taking a carbon nanotube as a numerical example and using the Euler–Bernoulli beam model, the natural frequencies of the carbon nanotubes with typical boundary conditions are computed and the asymptotic characteristics of natural frequencies are shown.  相似文献   
389.
390.
The enrichment and focusing of the nano-/submicroparticle (e.g., 150–1000 nm microvesicle shed from the plasma membrane) in the viscoelastic fluid has great potentials in the biomedical and clinical applications such as the disease diagnosis and the prognostic test for liquid biopsy. However, due to the small size and the resulting weak hydrodynamic force, the efficient manipulation of the nano-/submicroparticle by the passive viscoelastic microfluidic technology remains a major challenge. For instance, a typically long channel length is often required to achieve the focusing or the separation of the nano-/submicroparticle, which makes it difficult to be integrated in small chip area. In this work, a microchannel with gradually contracted cross-section and high aspect ratio (the ratio of the height to the average width of channel) is utilized to enhance the hydrodynamic force and change the force direction, eventually leading to the efficient enrichment of nano-/submicroparticles (500 and 860 nm) in a short channel length (2 cm). The influence of the flow rate, the particle size, the solid concentration, and the channel geometry on the enrichment of the nano-/submicroparticles are investigated. With simple structure, small footprint, easy operation, and good performance, the present device would be a promising platform for various lab-chip microvesicle-related biomedical research and disease diagnosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号