首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   36篇
  国内免费   31篇
化学   40篇
晶体学   2篇
力学   458篇
数学   103篇
物理学   238篇
综合类   46篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   14篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   33篇
  2013年   42篇
  2012年   18篇
  2011年   37篇
  2010年   13篇
  2009年   75篇
  2008年   44篇
  2007年   61篇
  2006年   44篇
  2005年   37篇
  2004年   20篇
  2003年   50篇
  2002年   28篇
  2001年   22篇
  2000年   17篇
  1999年   26篇
  1998年   27篇
  1997年   26篇
  1996年   29篇
  1995年   20篇
  1994年   23篇
  1993年   9篇
  1992年   19篇
  1991年   26篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有887条查询结果,搜索用时 15 毫秒
821.
This paper presents results from a program of experimental studies of ignition induced by the interaction of an initially planar shock wave with an obstacle in its path. With the aid of pressure measurements, spark schlieren photography and smoked foil techniques it is shown how, given favourable initial conditions, the two-dimensional multiple shock reflection and diffraction can promote ignition and transition to detonation in reactive gaseous mixtures. Comparison of the results with those of a non-reactive gas distinguishes the gas dynamic and chemical processes involved, and experimentally determined detonation cell sizes are compared with values predicted using chemical kinetic rate data. The systems investigated were argon, air, propane-air, propane-oxygen-argon and ethylene-oxygen-argon. Received: 3 December 1998 / Accepted: 27 October 1999  相似文献   
822.
Considering a one-dimensional problem of debonding of a thin film in the context of Griffith’s theory, we show that the dynamical solution converges, when the speed of loading goes down to 0, to a quasistatic solution including an unstable phase of propagation. In particular, the jump of the debonding induced by this instability is governed by a principle of conservation of the total quasistatic energy, the kinetic energy being negligible.   相似文献   
823.
In this paper, RR→MR transition of asymmetric shock waves has been theoretically studied. The transition can occur between the sonic-point and maximum-deflection criteria due to the the effects of expansion fans which are inherent flow structures. Comparison shows a better agreement among experiments and the analytical results. Some discrepancies reported in previous studies among experiments and theory have also been explained based on the threshold for RR→MR transition.   相似文献   
824.
Results of tests performed in a free-piston shock tunnel on a model scramjet engine are presented. Two conditions which differed in Mach number were tested. Flow at the lower Mach number condition was achieved using a variable-angle diffuser. Shadowgraph images and floor static pressure measurements were obtained, the latter used as the basis of a finite-difference calculation of flow properties in the scramjet. Received 9 May 1998 / Accepted 30 September 1998  相似文献   
825.
We consider finite volume methods for the numerical solution of conservation laws. In order to achieve high-order accurate numerical approximation to non-linear smooth functions, we introduce a new class of limiter functions for the spatial reconstruction of hyperbolic equations. We therefore employ and generalize the idea of double-logarithmic reconstruction of Artebrant and Schroll [R. Artebrant, H.J. Schroll, Limiter-free third order logarithmic reconstruction, SIAM J. Sci. Comput. 28 (2006) 359-381].  相似文献   
826.
The main objective of the current study was to gain a detailed understanding on the rate-dependent strength behavior under ramp and shock wave loading. A forward, numerical-simulation-based cause and effect analysis was used to address the research objective. The apparent strength associated with shock and ramp wave loadings with different risetimes and shapes was investigated. It was shown that intrinsic material strength could vary with pressure, temperature, and deformation history, but the apparent strength, which was larger than the intrinsic strength, was a result of the interaction between the rate sensitivity of the strength and the rate of the external loading. The degree of interaction led to different levels of mechanical and thermal dissipations and their partition, which was manifested by different temperature, stress, and deformation histories.  相似文献   
827.
Numerical simulations of two distinct testing configurations using a Hopkinson bar (pressure bar behind/ahead of the shock front) are performed with an explicit finite element code. It allows us to confirm the observed test data such as velocity and force time histories at the measurement surface. A comparison of the simulated local strain fields during shock front propagation with those measured by image correlation provides an additional proof of the validity of such simulations.Very simple rate insensitive phenomenological constitutive model are used in such simulations. It shows that the shock effect is captured numerically with a basic densification feature. It means that strength enhancement due to shock should not be integrated in the constitutive model of foam-like materials used in industrial FE codes.In order to separate shock enhancement from entire strength enhancement, an improvement of an existing model with easily identifiable parameters for shock enhancement prediction is proposed. For a quick estimate of the shock enhancement level, a simple power law densification model is proposed instead of the classical RPPL model proposed by Reid and co-workers [Tan et al., 2005. Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174-2205]. It is aimed at eliminating the parameter identification uncertainty of the RPPL model. Such an improved model is easily identifiable and gives a good prediction of the shock enhancement level.  相似文献   
828.
超音速目标识别过程中,其产生的N型激波容易与爆炸波混淆在一起,从爆炸波中识别N型激波非常重要。本文提出一种从爆炸波中识别N型激波的技术,通过用5.56mm,7.62mm,12.7mm超音速枪弹做射击试验和TNT炸药爆炸试验,获取N型激波和爆炸波原始数据,进行了特征提取,并采用主成份分析(PCA)方法对特征数据进行压缩处理后,用支持向量机(SVM)方法进行分类识别。结果表明,文中提出的识别方法是可行的和有效的。  相似文献   
829.
We present the results of the numerical modelling of the interaction of a shock wave with a cloud of finite size particles. The computations were carried out within the framework of continuum/discrete model with the use of the techniques of digital diagnostics and pattern recognition. The shock wave and vortex formation behind the cloud of particles as well as the formation of a dense layer in the cloud have been revealed. For this reason, the use of a cloud of particles for relaxing the shock wave may prove to be inefficient.  相似文献   
830.
A single fluid model of sheet/cloud cavitation is developed and applied to a NACA0015 hydrofoil. First, a cavity formation model is set up, based on a three-dimensional (3D) non-cavitation model of Navier–Stokes equations with a large eddy simulation (LES) scheme for weakly compressible flows. A fifth-order polynomial curve is adopted to describe the relationship between density coefficient ratio and pressure coefficient when cavitation occurs. The Navier–Stokes equations including cavitation bubble clusters are solved using the finite-volume approach with time-marching scheme, and MacCormack’s explicit-corrector scheme is adopted. Simulations are carried out in a 3D field acting on a hydrofoil NACA0015 at angles of attack 4°, 8° and 20°, with cavitation numbers σ = 1.0, 1.5 and 2.0, Re = 106, and a 360 × 63 × 29 meshing system. We study time-dependent sheet/cloud cavitation structures, caused by the interaction of viscous objects, such as vortices, and cavitation bubbles. At small angles of attack (4°), the sheet cavity is relatively stable just by oscillating in size at the accumulation stage; at 8° it has a tendency to break away from the upper foil section, with the cloud cavitation structure becoming apparent; at 20°, the flow separates fully from the leading edge of the hydrofoil, and the vortex cavitation occurs. Comparisons with other studies, carried out mainly in the context of flow patterns on which prior experiments and simulations were done, demonstrate the power of our model. Overall, it can snapshot the collapse of cloud cavitation, and allow a study of flow patterns and their instabilities, such as “crescent-shaped regions.”  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号