首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   36篇
  国内免费   31篇
化学   40篇
晶体学   2篇
力学   458篇
数学   103篇
物理学   238篇
综合类   46篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   14篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   33篇
  2013年   42篇
  2012年   18篇
  2011年   37篇
  2010年   13篇
  2009年   75篇
  2008年   44篇
  2007年   61篇
  2006年   44篇
  2005年   37篇
  2004年   20篇
  2003年   50篇
  2002年   28篇
  2001年   22篇
  2000年   17篇
  1999年   26篇
  1998年   27篇
  1997年   26篇
  1996年   29篇
  1995年   20篇
  1994年   23篇
  1993年   9篇
  1992年   19篇
  1991年   26篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有887条查询结果,搜索用时 15 毫秒
771.
Shock wave attenuation by grids and orifice plates   总被引:2,自引:0,他引:2  
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.  相似文献   
772.
Focusing of strong shock waves in a gas-filled thin convergence chamber with various forms of the reflector boundary is investigated experimentally and numerically. The convergence chamber is mounted at the end of the horizontal co-axial shock tube. The construction of the convergence chamber allows the assembly of the outer chamber boundaries of various shapes. Boundaries with three different shapes have been used in the present investigation—a circle, an octagon and a smooth pentagon. The shock tube in the current study was able to produce annular shocks with the initial Mach number in the range M s = 2.3 − 3.6. The influence of the shape of the boundary on the shape and properties of the converging and reflected shock waves in the chamber has then been investigated both experimentally and numerically. It was found that the form of the converging shock is initially governed by the shape of the reflector and the nonlinear interaction between the shape of the shock and velocity of shock propagation. Very close to the center of convergence the shock obtains a square-like form in case of a circular and octagonal reflector boundary. This is believed to stem from the instability of the converging shock front triggered by the disturbances in the flow field. The outgoing, reflected shocks were also observed to be influenced by the shape of the boundary through the flow ahead as created by the converging shocks.  相似文献   
773.
A contact discontinuity tracking method with a specially designed moving grid is developed to eliminate the interface smearing completely. In order to precisely locate the contact surface, an updated Riemann solver for unsteady one-dimensional inviscid flows is also developed to allow consideration of the specific heat ratio change across the shock wave. These two new computational techniques are illustrated in a high Mach number shock tube flow field computation. Received 30 October 1997 / Accepted 6 December 1997  相似文献   
774.
Transient shock wave flows in tubes with a sudden change in cross section   总被引:3,自引:0,他引:3  
This paper describes propagation of shock waves within circular cross-section shock tubes with a sudden area change in cross section. A dispersion-controlled scheme was used to solve the Euler equations assuming axisymmetric flows. For experimental visualizations an aspheric cylindrical test section was designed to keep collimated incident light rays parallel once they were reflected or refracted on the inner and outer surfaces of the test section. For effective comparisons with experimental results, equivalent numerical interferograms were constructed to demonstrate effectiveness of the numerical method and verify the observed shock-wave phenomena. The numerical method was used to calculate three further cases with variations of the initial shock-wave Mach number and the flow geometry to clarify the role of these parameters. Complex transient shock-wave phenomena, such as shock-wave reflection, shock/vortex interaction and shock-wave focusing were observed in these cases, and interpreted with shock wave theory. In addition, the research clearly shows that combination of CFD with experiments is effective to highlight physical phenomena in axisymmetric flows. Received 15 June 1996 / Accepted 20 December 1996  相似文献   
775.
D. Q. Xu  H. Honma 《Shock Waves》1991,1(1):43-49
A numerical simulation was performed for the process of formation of single Mach reflection on a wedge by solving a BGK type kinetic equation for the reduced distribution function with a finite difference scheme. The calculations were carried out for a shock Mach number 2.75 and wedge angle 25° in a monatomic gas, which corresponds to the conditions of single Mach reflection in the classical von Neumann theory. The calculations were performed for both diffuse and specular reflection of molecules at the wall surface. It is concluded that the diffuse reflection of molecules at the wall surface or the existence of the viscous or thermal layer is an essential factor for a nonstationary process at the initial stage of Mach reflection. Furthermore, the numerical results for diffuse reflection are found to simulate the experimental results very well, such as a transient process from regular reflection to Mach reflection along with shock propagation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   
776.
I. D. Boyd 《Shock Waves》1991,1(3):169-176
Computations are presented for the relaxation zone behind strong, one-dimensional shock waves in nitrogen. The analysis is performed with the direct simulation Monte Carlo method (DSMC). The DSMC code is vectorized for efficient use on a supercomputer. The code simulates translational, rotational and vibrational energy exchange and dissociative and recombinative chemical reactions. A new model is proposed for the treatment of three body recombination collisions in the DSMC technique which usually simulates binary collision events. The new model represents improvement over previous models in that it can be employed with a large range of chemical rate data, does not introduce into the flow field troublesome pairs of atoms which may recombine upon further collision (pseudo-particles) and is compatible with the vectorized code. The computational results are compared with existing experimental data. It is shown that the derivation of chemical rate coefficients must account for the degree of vibrational nonequilibrium in the flow. A nonequilibrium chemistry model is employed together with equilibrium rate data to compute successfully the flow in several different nitrogen shock waves.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   
777.
Broadband single pulse coherent anti-Stokes Raman scattering (CARS) experiments employing a folded box phase matching geometry in a shock tunnel flow are presented. Rovibrational spectra of molecular nitrogen, produced at the exit of a pulsed supersonic nozzle for a range of flow enthalpies, are examined. Difficulties peculiar to the application of the optical technique to a high enthalpy pulsed flow facility are discussed and measurements of flow temperatures are presented. Theoretically calculated values for temperatures based upon algorithms used to determine shock tunnel flow conditions agree well with experimental measurements using the CARS technique.  相似文献   
778.
Schlieren methods are widely known and well established to visualize refractive index variations in transparent media. The use of color allows one to obtain more data and previously inaccessible information from a picture taken with this technique. In general, a hue can be related to a certain strength or a certain direction of a refractive index gradient. While the first case essentially corresponds to the usual black- and-white system the latter correlation cannot be made adequately evident without the use of color. Two color schlieren techniques are presented here, which reach or even exceed the quality and sensitivity range of conventional black- and-white methods. Using a powerful short duration light source these methods are applied to visualize transient flow phenomena in a shock tube.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   
779.
徐立功 《力学学报》1990,22(5):547-554
为了减小由于反射激波和透射激波分叉引起的反射型激波风洞试验气体提前受到污染的现象,本文研究了一种新的具有抽吸的激波管流动,分析了抽吸缝的作用,给出了这种抽吸激波管性能参数的计算方法,同时还给出了反射激波与边界层相互作用引起的激波分叉的形状随抽吸量变化的计算公式。实验证实了边界层抽吸可以有效地减小激波与壁面边界层相互作用所产生的分离现象。计算与测量结果是一致的。  相似文献   
780.
In this paper, we develop a fully anisotropic, nonlinear, thermodynamically consistent model for single crystals under high rates of loading with thermodynamically consistent decoupling of the stress tensor into hydrostatic and deviatoric components. A new slip resistance model, which accounts for the main high-pressure mechanisms arising at the microscale including the effects of phonon drag, has been developed. When applied to α-RDX single crystals, the model is capable of predicting the salient elastic-plastic wave characteristics observed in gas gun experiments which include stress relaxation behind the elastic wave, elastic wave decay and increasing separation between the elastic and plastic waves with propagation. At lower pressures, slip activity is observed to occur over a longer period of time resulting in a distinct elastic plastic wave, which is missing at higher pressures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号