首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   36篇
  国内免费   31篇
化学   40篇
晶体学   2篇
力学   458篇
数学   103篇
物理学   238篇
综合类   46篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   14篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   33篇
  2013年   42篇
  2012年   18篇
  2011年   37篇
  2010年   13篇
  2009年   75篇
  2008年   44篇
  2007年   61篇
  2006年   44篇
  2005年   37篇
  2004年   20篇
  2003年   50篇
  2002年   28篇
  2001年   22篇
  2000年   17篇
  1999年   26篇
  1998年   27篇
  1997年   26篇
  1996年   29篇
  1995年   20篇
  1994年   23篇
  1993年   9篇
  1992年   19篇
  1991年   26篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有887条查询结果,搜索用时 31 毫秒
61.
The flow structure of an underexpanded supersonic jet with high reservoir temperature impinging on a flat plate has been numerically investigated using a Total Variation Diminishing (TVD) scheme. When the temperature of the flow field is high enough to cause chemical reaction, the specific heat ratio,, is no longer equal to 1.4, nor constant. This explains the difference found in the literature between the flow properties of the calorically perfect gas and that of the chemically reacting flow. Under the equilibrium flow assumption the effect of high temperature gas on the impinging jet has been taken into account in the present paper by using specific heat ratio and speed of sound given by correlation polynomials of thermodynamic variables. The limiting case of cold jet calculation in the present numerical results agreed well with the existing experimental data. For the equilibrium jet with high reservoir temperature,T o=1000K, qualitative support of the present result has been provided by means of the approximation theory.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   
62.
Experiments were conducted to investigate the DDT process of the oxyhydrogen gas in the rectangular detonation tube of 3 m long. The repeated obstacle was installed near the ignition plug and the effects of the obstacle on the DDT process were investigated. The behaviour of the combustion and detonation wave were visualized utilizing Imacon high-speed camera with the aid of Schlieren optics. As a result, DDT process was visualized, i.e. (i) multiple shock waves were induced by the expanding combustion wave, because the combustion flame played a role as a piston and compressed the unburned gases. (ii) The acceleration of the combustion wave was occurred and the distance between the shock wave and the combustion flame became shorter. (iii) Eventually, the local explosion was occurred and cause overdriven detonation wave to propagate at the velocity of about 3 kms−1. An abridged version of this paper was presented at the 15th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Boulder, Colorado, from July 30 to August 4, 1995  相似文献   
63.
Ramp wave experiments on the Sandia Z accelerator provide a new approach to study the rapid compression response of materials at pressures, temperatures and stress or strain rates not attainable in conventional shock experiments. Due to its shockless nature, the ramp wave experiment is often termed as an isentropic (or quasi-isentropic) compression experiment (ICE). However, in reality there is always some entropy produced when materials are subjected to large amplitude compression even under shockless loading. The entropy production mechanisms that cause deformation to deviate from the isentropic process can be attributed to mechanical and thermal dissipations. The former is due to inelasticity associated with various deformation mechanisms and the rate effect that is inherent in all the deformation processes and the latter is due to irreversible heat conduction. The main purpose of the current study is to gain insights into the effects of ramp and shock loading on the entropy production and thermomechanical responses of materials. Another purpose is to investigate the role of heat conduction in the material response to both the non-steady ramp wave and steady shock.Numerical simulations are used to address the aforementioned research objectives. The thermomechanical response associated with a steady shock wave is investigated first by solving a set of nonlinear ordinary differential equations. Using the steady wave solutions as the reference, the material responses under non-steady ramp waves are then studied with numerical wave propagation simulation. It is demonstrated that the material response to ramp and shock loading is essentially a manifestation of the interaction between the time scale associated with the loading and the intrinsic time scales associated with mechanical deformation and heat transfer. At lower loading rates as encountered in ramp loading, the loading path is closer to an isentrope and results in lower entropy production. The reasonable ramp rate to obtain a quasi-isentropic state depends on the intrinsic time scales of the dissipation mechanisms which are strongly material dependent. Thus shockless loading does not necessarily produce an isentropic response. Between two equilibrium states, heat conduction was shown to have significant effect on the temperature history but it contributes little to the overall temperature change if the specific heat remains constant. It also affects the history of entropy, but only the irreversible part of heat conduction contributes to the net entropy change. The various types of thermomechanical responses of materials would manifest themselves more significantly in terms of the thermal history than the mechanical history. Thus temperature measurement appears to be an important experimental tool in distinguishing the various mechanisms for the thermomechancial responses of the materials.  相似文献   
64.
Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios , and shock Mach number . The distribution of relative velocities for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of . The maximum value of this superequilibrium was about for the numerical density ratio: 1000:1:1 and . Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave. Received 4 August 1995 / Accepted 25 April 1996  相似文献   
65.
66.
Two types of plasma spikes, generated by on-board 60 Hz periodic and pulsed dc electric discharges in front of two slightly different wind tunnel models, were used to demonstrate the non-thermal plasma techniques for shock wave mitigation. The experiments were conducted in a Mach 2.5 wind tunnel. (1) In the periodic discharge case, the results show a transformation of the shock from a well-defined attached shock into a highly curved shock structure, which has increased shock angle and also appears in diffused form. As shown in a sequence with increasing discharge intensity, the shock in front of the model moves upstream to become detached with increasing standoff distance from the model and is eliminated near the peak of the discharge. The power measurements exclude the heating effect as a possible cause of the observed shock wave modification. A theory using a cone model as the shock wave generator is presented to explain the observed plasma effect on shock wave. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow; such a flow deflection modifies the structure of the shock wave generated by the cone model, as shown by the numerical results, from a conic shape to a curved one. The shock front moves upstream with a larger shock angle, matching well with that observed in the experiment. (2) In the pulsed dc discharge case, hollow cone-shaped plasma that envelops the physical spike of a truncated cone model is produced in the discharge; consequently, the original bow shock is modified to a conical shock, equivalent to reinstating the model into a perfect cone and to increase the body aspect ratio by 70%. A significant wave drag reduction in each discharge is inferred from the pressure measurements; at the discharge maximum, the pressure on the frontal surface of the body decreases by more than 30%, the pressure on the cone surface increases by about 5%, whereas the pressure on the cylinder surface remains unchanged. The energy saving from drag reduction is estimated to make up two-thirds of the energy consumed in the electric discharge for the plasma generation. The measurements also show that the plasma effect on the shock structure lasts much longer than the discharge period.
  相似文献   
67.
F. Ohtomo  K. Ohtani  K. Takayama 《Shock Waves》2005,14(5-6):379-390
The paper reports results of shock tube experiments of the attenuation of shock waves propagating over arrayed baffle plates, which is motivated to simulate shock wave attenuation created accidentally at the acoustic delay line in synchrotron radiation factory upon the rupture of a metal membrane separating the acceleration ring at high vacuum and atmospheric test chambers. Experiments were carried out, by using double exposure holographic interferometry with double path arrangement, in a 100 mm×180 mm shock tube equipped with a test section of 180 mm×1100 mm view field. Two baffle plate arrangements were tested: Oblique and staggered baffle plates; and vertical symmetric ones. Pressures were measured along the shock tube sidewall at individual compartments for shock Mach numbers ranging from 1.2 to 3.0 in air. The results were compared with a numerical simulation. The rate of shock attenuation over these baffle plates was compared for vertical and oblique baffle plates. Shock wave attenuation is more pronounced in the oblique baffle plate arrangements than in the vertical ones. PACS 47.40.Nm; 42.40.Kw Communicated by C. Needham  相似文献   
68.
作者在方形爆轰管中进行了H_2—O_2—Ar系统的实验研究。在由Ar稀释的H_2—O_2混合物的爆轰实验中得到了规则的胞格结构图案。也得到了胞格形成的临界曲线,并与爆炸极限曲线进行了对照,两者的趋势是一致的。另外,测量了从点火处到胞格形成处之间的距离及胞格区的长度。最后分析了氩Ar浓度对H_2—O_2爆轰的抑制作用。  相似文献   
69.
Based on experimental results and some additional simplifying assumptions, the general macroscopic two phase equations governing the flow field which is developed in a gas saturated rigid porous medium domain were simplified to a form which enab led us to develop two analytical models for calculating the jump conditions across strong compaction waves.Predictions obtained by these two simplified analytical models are compared to the experimental results of Sandusky and Liddiard (1985) and to predictions of another more complicated model which was proposed by Powers et al. (1989). Fairly good to excelle nt agreements are evident.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   
70.
Hyperbolic models for compressible two-phase flows including a conservative symmetric hyperbolic model are reviewed. The basis for a theory of shock waves is developed within the framework of the latter. The analysis of small amplitude discontinuities allows us to conclude that in general there are two types of shocks corresponding to two sound waves. The problem of transition between a pure phase and a mixture (the phase vacuum problem) is analysed. It is proved that for some models the smooth centred wave solution can not provide such a transition. Within the framework of our conservative model there is the possibility of constructing discontinuous solutions which can resolve the phase vacuum problem.PACS: 47.55Kf, 47.40.-xE. Romenski: On leave from Sobolev Institute of Mathematics, Russian Academy of Sciences, Novosibirsk 630090, Russia  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号