首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1732篇
  免费   78篇
  国内免费   83篇
化学   793篇
晶体学   63篇
力学   49篇
综合类   13篇
数学   24篇
物理学   467篇
综合类   484篇
  2024年   1篇
  2023年   13篇
  2022年   42篇
  2021年   26篇
  2020年   39篇
  2019年   36篇
  2018年   43篇
  2017年   47篇
  2016年   63篇
  2015年   44篇
  2014年   84篇
  2013年   126篇
  2012年   71篇
  2011年   113篇
  2010年   73篇
  2009年   121篇
  2008年   106篇
  2007年   137篇
  2006年   122篇
  2005年   80篇
  2004年   78篇
  2003年   77篇
  2002年   54篇
  2001年   42篇
  2000年   47篇
  1999年   27篇
  1998年   22篇
  1997年   34篇
  1996年   18篇
  1995年   20篇
  1994年   18篇
  1993年   12篇
  1992年   13篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有1893条查询结果,搜索用时 15 毫秒
81.
The present study reports the synthesis, spectral characterization, self-assembly properties, and preliminary in vitro study of antioxidant capacity of two triple covalent hybrids consisting of fullerene C60, peptide, and steroidal moiety. Previously synthesized fulleropyrrolidinic acid and pregnenolone were connected by peptide linker using a multistep DCC/DMAP and/or EDC/HOBT esterification/amidation procedure. The hybrids were characterized by comparative analysis of spectroscopic data obtained from FTIR, UV–vis, HRMS, and extensive NMR experiments (1H, 13C, COSY, HSQC, and HMBC). The self-assembling properties and morphology of triads samples prepared by drop-drying method were examined by scanning electron microscopy (SEM). Preliminary in vitro antioxidant activity was studied by Ferrous ion Oxidation-Xylenol orange (FOX) method.  相似文献   
82.
The adsorption and corrosion inhibition behavior of synthesized Schiff base-based cationic gemini surfactant bis[p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene]thiourea (14-S-14) on mild steel in 20% formic acid in the temperature range of 30°C to 60°C was evaluated using weight loss measurements, solvent analysis of iron ions and potentiodynamic polarization measurements. The synthesized inhibitor was characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thin layer chromatography (TLC). The surface morphology of the corroded mild steel specimen was evaluated using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), and atomic force microscopy (AFM). Thermodynamic/kinetic parameters were calculated to elaborate the adsorption and corrosion inhibition mechanism of the inhibitor. The inhibition efficiency of the compound was found to vary with inhibitor concentration, immersion time, and temperature. The adsorption of the compound on the steel surface was found to obey Langmuir adsorption isotherm.   相似文献   
83.
In the past decade Surface Enhanced Raman Scattering (SERS) has emerged as a powerful technique for the analysis of artistic, historical and archaeological material culture. However, the identification of organic compounds in complex samples using SERS can be challenging owing to the complexity in optimizing the adsorption of target analytes onto the plasmonic substrate and the difficulty to identify proper areas on the sample for robust SERS analysis using optical systems. Scanning electron microscopy (SEM) interfaced with Raman spectromicroscopy (μRS) provides an ideal hyphenated system to overcome the last challenge by: (1) evaluating the nanoparticles coverage/distribution on the sample and (2) locating suitable areas for successful and reproducible SERS analysis. In this paper we demonstrate the potential of a system interfacing SEM and μRS for single fiber, extractionless analysis in the characterization of dyes from reference collections and archaeological textiles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
84.
The progress in the development of gas sensors has considerably grown using some novel nanomaterials of metal, metal oxide and composite. In the current study, we intended and evaluated the properties of nanomaterials like CeO2, NiO, and CeO2–NiO composite and its application as NO2 gas sensor. Sensing of low concentration of NO2 gas at optimum functional temperature was succeeded using CeO2–NiO nanocomposites (NCs) film. The working temperature ranges in between 100 and 225 ?°C. Highly crystalline nanomaterials (CeO2, NiO and CeO2–NiO) have been prepared by applying microwave-assisted sol-gel route. The as-prepared nanomaterials are characterized for their structure, size, morphology and constitution by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis. XRD studies of nanoparticles reveal the formation of nanoscale CeO2 and NiO with crystallite size 26, 23 ?nm, respectively. Both are having a face centered cubic structure. The nanocomposite (NC) Ce:Ni ?= ?60:40 has crystallite size of 13 ?nm. XRD study of NCs shows assimilation of Ni metal into the ceria and proves physical similarities of two phases. It can be observed from SEM that prepared NC has a porous surface which enables more surface active sites for adsorbing oxygen. The optical properties are measured with the help of UV–Vis. Spectroscopy. Optical band gaps of 3.19, 3.41 and 2.9 ?eV were observed for CeO2, NiO nanoparticles (NPs) and CeO2–NiO NC, respectively. Gas sensing properties state that the NC material shows a higher gas response % of 67.34% for NO2 gas (25 ?ppm) at comparatively low operating temperature (125 ?°C). It gives response time as (~28 ?s) and the recovery (~54 ?s). NiO incorporation in CeO2 results in a decline of operating temperature of NC and improves the sensing features.  相似文献   
85.
Nelumbo nucifera leaves are rich source of natural wax possessing super-hydrophobic properties. It provides protection to them from ecological turbulences and climatic wear and tear. In this study, various experiments have been conducted to observe the yield of extraction and the determination of various functional groups, which are present in natural wax, derived from Nelumbo nucifera leaves. The natural wax has been extracted from lotus leaves through non-polar (hexane) and polar (ethanol) solvent via different extraction methods. The superhydrophobic wax has been successfully extracted with hexane. Whereas, ethanol did not extract the water-repellent wax of lotus leaf. Considering the cumulative amount, i.e. (desired + undesired), the maceration shows the extraction of 2.9% (%w/w, through hexane) and 10.2% (%w/w, through ethanol), while it was found 2.5% (%w/w, cycle period 15 min) and 9.0% (%w/w, cycle period 26 min) respectively, in case of Soxhlet extraction technique. For this specific case of natural wax recovery from biomass (lotus leaf), the maceration (traditional method) resulted a little bit superior extraction yield in comparison to the Soxhlet extraction method for extraction of crude wax. In the case of non-polar solvent (hexane), an extraction yield of 1.97% (%w/w) through maceration method was observed while in the case of non-polar solvent (ethanol), an extraction yield of 1.62% (%w/w) through Soxhlet extraction was observed. The TLC analysis on both types of extracts was performed. For the detection of various hydrocarbon chains in the crude wax extracts, FTIR was also performed. Topography of wax surface and wax-coated waterproof fabric was compared through SEM.  相似文献   
86.
Multidrug resistance (MDR) is one of the major global threats of this century. So new innovative approaches are needed for the development of existing antibiotics to limit antibacterial resistance. The current study was aimed to utilize extracts of root, stem, and leaves of Persicaria hydropiper for the synthesis of silver nanoparticles (AgNPs) using standard procedure. Synthesis of AgNPs was evident from the change in color of the solution to dark brownish and then it was further revealed by UV–Vis and Fourier Transformed Infrared Spectroscopy (FTIR). UV–Vis spectroscopy has revealed absorbance peak at 370 nm while, FTIR spectrum displayed that aromatics amines were used as reducing agent in the fabrication of AgNPs. In addition, Scanning Electron Microscopy (SEM micrograph) displaying tetrahedron, spherical and oval shapes of synthesized AgNPs whereas, average size of synthesized AgNPs was found in the range of 32–77 nm. Beside this, it was also observed that the potency of antibiotics against MDR bacteria increased after coating with synthesized AgNPs i.e., the potency of Ceftazidime and Ciprofloxacin increased up to 450% and 500% against Bacillus respectively while, the potency of Gentamicin, Vancomycin and Linezolid increased up to 150%, 200% and 58% against Bacillus, Staphylococcus, and Proteus species respectively. Furthermore, it was concluded that utilizing AgNPs in combination with commercially available antibiotics would provide an alternate therapy for the treatment of infectious diseases caused by MDR bacteria.  相似文献   
87.
Tinnevelly senna leaves are being applied to cure many diseases especially in developing countries and sub-Saharan region due to many bioactive compounds such as sennosides, phenols, and flavonoids. The conventional methods to isolate and analyze plant extracts biomolecules are not very effective as well cost effective as they require hazardous chemical solvents and reagents, which are time-consuming processes. The major objective of the present study is to investigate the feasibility of the Laser induced breakdown spectroscopy (LIBS) technique for rapid, eco-friendly, and multi-elemental analysis of Senna leaves extracts and study their antibacterial and anticancer potentials. The elegant LIBS technique was applied as a qualitative and quantitative method for Senna leaves sample’s elemental analysis and their biological activities were measured by evaluating anti-cancer and anti-bacterial analysis. The quantitative analysis of Senna leaves extracts was done using the calibration-free laser-induced breakdown spectroscopy (CF-LIBS) algorithm showing their appreciable content of several nutrient elements, and the obtained results were in close conformity with these achieved by using the standard analytical ICP OES technique. We studied the bactericidal efficacy of the Senna leaves extract against Staphylococcus aureus (S. aureus) by AWD assays and morphogenesis by scanning electron microscopy (SEM) and the anticancer activity was also investigated where different concentrations of Senna leaves extract were tested on cancer cells (HCT-116 and HeLa) and normal cells (HEK-293) using the cell metabolic activity MTT assay and Propidium iodide (PI) staining. We have also calculated the inhibitory concentration (IC50) value for the various extracts concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml, 150 µg/ml, 200 µg/ml, and 225 µg/ml). We have found that IC50 value for HCT-116 cells were 13.5 µg/ml, 17.5 µg/ml, 21.5 µg/ml, 22.5 µg/ml, 26 µg/ml and 33.5 µg/ml and for HeLa cells 15.25 µg/ml, 21.25 µg/ml, 23.5 µg/ml, 262.5 µg/ml, 36.25 µg/ml, and 39.50 µg/ml. The bactericidal efficacy of the Senna leaves extract showed significant inhibition against Gram-positive bacterium. Both MTT and PI analysis showed that Senna leaves extract induced profound inhibition on HCT-116 growth and proliferation. Additionally, Senna leaves extract did not exert an inhibitory influence on normal (HEK-293), which is non-cancerous cells. We suggest that the extract specifically targets the cancerous cells, which could be highly beneficial for the development of future safe anticancer and antibacterial drugs using these extracts.  相似文献   
88.
We have synthesized AlN nanoparticles (NPs) doped in-situ with Er (AlN:Er) using inert gas condensation technique. Using x-ray diffraction (XRD) peak broadening analysis with the Williamson–Hall (W–H) Uniform Deformation Model (UDM) the crystallite size of the NPs and the strain in NPs were found to be 80±38 nm and 3.07×10−3±0.9×10−3 respectively. In comparison, using the Debye–Scherrer's (DS) formula, we have inferred that the crystallite size of the NPs was 23±6 nm and the average strain was 4.3×10−3±0.4×10−3. The scanning electron microscopy images show that the NPs are spherical and have an average diameter of ∼300 nm. The crystallite size is smaller than the size of the NPs revealing their polycrystalline behavior. In addition, the NPs strain, stress and energy density were also calculated using W–H analysis combined with the Uniform Deformation Stress Model (UDSM) and the Uniform Deformation Energy Density Model (UDEDM). Suggested by the spherical geometry and polycrystalline nature of the AlN NPs, the strain computed from UDM, UDSM and UDEDM were in agreement confirming an isotropic mechanical nature of the particle. Luminescence measurements revealed the temperature dependence of the optical emission of the Er3+ ions, confirming the use of AlN:Er NPs for nano-scale temperature sensing.  相似文献   
89.
应用结构方程模型研究中药药性和药味间关系   总被引:1,自引:0,他引:1  
应用结构方程模型研究了200味中药药性和药味间的相互关系.结果表明,五种药味间存在一定的相关性,其中关系最强位于甜味与酸味间,中药药性与五味也存在相关关系,分析表明甜味与酸味在较大程度上影响药性.  相似文献   
90.
Nanostructures (NSs) of basic composition Sn1−xFex/2Cox/2O2 with x=0.00, 0.04, 0.06, 0.08 and 0.1 were synthesized by citrate-gel route and characterized to understand their structural, electrical and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase rutile type tetragonal structure. The crystallite sizes calculated by using Williamson Hall were found to decrease with increasing doping level. In addition to the fundamental Raman peaks of rutile SnO2, the other three weak Raman peaks at about 505, 537 and 688 cm−1 were also observed. Field emission scanning electron microscopy studies showed the emergence of structural transformation. Electric properties such as dc electrical resistivity as a function of temperature and ac conductivity as a function of frequency were also studied. The variation of dielectric properties with frequency reveals that the dispersion is due to Maxwell–Wagner type of interfacial polarization in general. Hysteresis loops were clearly observed in M–H curves of Fe and Co co-doped SnO2 NSs. However, pure SnO2 nanoparticles (NPs) showed paramagnetic behaviour which vanished at higher values of magnetic field. The grain and grain boundary contribution in the conduction process is estimated through complex impedance plot fitted with non-linear least square (NLLS) approach which shows that the role of grain boundaries increases rapidly as compared to the grain volume with the increase of Fe and Co ions in to system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号