首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   4篇
  国内免费   2篇
化学   9篇
晶体学   1篇
力学   29篇
数学   8篇
物理学   70篇
综合类   62篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   23篇
  2012年   10篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   12篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   14篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1991年   3篇
排序方式: 共有179条查询结果,搜索用时 234 毫秒
141.
为了考察湍流燃烧过程中的辐射热影响,数值模拟了Sanida火焰D,其中湍流流动采用多时间尺度(MTS)k-ε湍流模型模拟,燃烧过程采用概率密度函数(PDF)方法和拉格朗日火焰面模型(LFM)以及详细化学反应机理GRI3.0联合的方法模拟,辐射换热采用有限体积(FVM)联合关联k分布模型模拟。计算结果和实验数据的比较发现虽然相对于燃烧热,辐射热是一个小量,但是考虑了辐射热影响以后,模拟结果大有改进。针对该现象,我们给出的解释是由于在湍流燃烧过程中,湍流过程,燃烧过程以及辐射换热过程三者是强耦合的,湍流作用很可能会将辐射换热作用放大,因此,对于燃烧过程的详细数值模拟,建议考虑辐射换热的影响。  相似文献   
142.
Numerical simulation results are presented for ‘Delft Flame III’, a piloted jet diffusion flame with strong turbulence–chemistry interaction. While pilot flames emerge from 12 separate holes in the experiments, the simulations are performed on a rectangular grid, under the assumption of axisymmetry. In the first part of the paper, flow and mixing field results are presented with a non-linear first order k–ε model, with the transport equation for ε based on a modeled enstrophy transport equation, for cold and reactive flows. For the latter, the turbulence model is applied in combination with pre-assumed β-PDF modeling for the turbulence–chemistry interaction. The mixture fraction serves as conserved scalar. Two chemistry models are considered: chemical equilibrium and a steady laminar flamelet model. The importance of the turbulence model is highlighted. The influence of the chemistry model is noticeable too. A procedure is described to construct appropriate inlet boundary conditions. Still, the generation of accurate inlet boundary conditions is shown to be far less important, their effect being local, close to the nozzle exit. In the second part of the paper, results are presented with the transported scalar PDF approach as turbulence–chemistry interaction model. A C1 skeletal scheme serves as chemistry model, while the EMST method is applied as micro-mixing model. For the transported PDF simulations, the model for the pilot flames, as an energy source term in the mean enthalpy transport equation, is important with respect to the accuracy of the flow field predictions. It is explained that the strong influence on the flow and mixing field is through the turbulent shear stress force in the region, close to the nozzle exit.  相似文献   
143.
The auto-ignition behaviour of hydrogen in a turbulent flow field has been studied through a combination of detailed and systematically reduced chemistry with a transported PDF approach closed at the joint-scalar level. Radiation is accounted for through the RADCAL method and the inclusion of enthalpy into the joint-scalar PDF. Molecular mixing is closed using the modified Curl's model with the mixing frequency accounted for via two algebraic closures. The main aim of the work is to compare the impact of alternative chemical mechanisms on auto-ignition and to explore the accuracy that can be expected when reactive scalars are sequentially removed through the application of quasi-steady-state approximations (QSSAs). Two different detailed mechanisms were tested to establish the effects of intrinsic uncertainties in the detailed chemistry and to provide reference points to past work. The mechanisms feature nine solved species and 19 or 20 reversible chemical reactions. The chemical mechanisms were subsequently systematically reduced to five, four and three independent scalars through the successive introduction of QSSAs for H2O2, HO2 and O. Resulting inaccuracies were quantified following each simplification step with reference to experimental data obtained in shock tubes and under turbulent flow conditions in the Cabra burner configuration. A sensitivity analysis was also performed to identify the relative impact of uncertainties in key reactions as compared to systematic simplification process. It was found that alternative recommended rates for the O + H2 = OH + H reaction have an impact on the point of flame stabilization that is similar to that observed as a consequence of the simplification process. The work also shows that realistic results can be obtained with simplified chemistry. However, it is also concluded that the temporal evolution of the radical pool and the point of stabilization is affected by the introduction of a QSSA for the O radical. Furthermore, it is shown by comparisons with time resolved OH radical data obtained in shock tubes that the progressive elimination of species via QSSA leads to a shortening of ignition delay times and that the same effects are present, but less severe, in turbulent flow fields.  相似文献   
144.
This paper deals with the particle-mesh probability density function (PDF) method. It shows how an existing but less precise pressure algorithm for the stand-alone method can be improved. The present algorithm is able to handle the general case of an unsteady three-dimensional turbulent reacting flow. The transport equation of the joint PDF of velocity and composition is solved with a particle method. Open boundary conditions are realized and for statistical reasons a simple but effective particle splitting procedure is applied.

Based on a simple configuration, the properties of the presented improved pressure algorithm are analysed. It is shown which numerical condition must be taken care of so that the algorithm is able to correct the particle positions such that the normalization condition is fulfilled as accurately as specified.

To verify the algorithm the combustion of a methane–air mixture enclosed in an open simulation volume is calculated. It is shown that the simple particle splitting algorithm works very effectively in the studied case. The behaviour of the improved pressure algorithm is examined by different calculations. To analyse the convergence of the algorithm, the particle number per cell and the grid spacing are varied. To demonstrate the accuracy, a statistically stationary inflow/outflow configuration is used and the numerical solution is compared to an analytical one. For a less symmetric test case, the previous unsteady combustion problem is simulated, including an additional mean velocity in one direction.

The presented improved pressure algorithm provides the opportunity to calculate unsteady three-dimensional turbulent reacting flows with a stand-alone method, and offers an alternative to the complex hybrid finite-volume/particle PDF method.  相似文献   
145.
A series of piloted premixed jet flames with strong finite-rate chemistry effects is studied using the joint velocity-turbulence frequency-composition PDF method. The numerical accuracy of the calculations is demonstrated, and the calculations are compared to experimental data. It is found that all calculations show good agreement with the measurements of mean and rms mixture fraction fields, while the reaction progress is overpredicted to varying degrees depending on the jet velocity. In the calculations of the flame with the lowest jet velocity, the species and temperature show reasonable agreement with the measurements, with the exception of a small region near the centerline where products and temperature are overpredicted and fuel and oxidizer are underpredicted. In the calculations of the flame with the highest jet velocity, however, the overprediction of products and temperature and underprediction of fuel and oxidizer is far more severe. An extensive set of sensitivity studies on inlet boundary conditions, turbulence model constants, mixing models and constants, radiation treatment, and chemical mechanisms is conducted to show that any parameter variation offers little improvement from the base case. To shed light on these discrepancies, diagnostic calculations are performed in which the chemical reactions are artificially slowed. These diagnostic calculations serve to validate the experimental data and to quantify the amount by which the base case calculations overpredict reaction progress. Improved calculations of this flame are achieved only through artificially slowing down the chemical reaction by a factor of about 10. The mixing model behavior in this combustion regime is identified as a likely cause for the observed discrepancy in reaction progress.  相似文献   
146.
The influence of time-averaging on bias is investigated in the finite-volume/particle hybrid algorithm for the joint PDF equation for statistically-stationary turbulent reactive flows. It is found that the time-averaging of the mean fluctuating velocity (TAu) leads to the same variances of the fluctuating velocity before and after the velocity correction, whereas without TAu the estimates are different, and an additional numerical dissipation rate is introduced for the turbulent kinetic energy (TKE). When 100 particles per cell are used without TAu, a large bias error is found to be involved in the unconditional statistics of the statistically-stationary solutions of two tested turbulent flames, the Cabra H2/N2 lifted flame and the Sandia piloted flame E. The use of TAu reduces this bias dramatically for the same number of particles per cell. The conditional statistics in these flames, however, are hardly affected by TAu. To a large extent, the effect of the bias error on the unconditional statistics is similar to the effect of increasing the model constant C ω 1 in the stochastic turbulence frequency model.  相似文献   
147.
An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.  相似文献   
148.

Reactive flow simulations using large-eddy simulations (LES) require modelling of sub-filter fluctuations. Although conserved scalars like mixture fraction can be represented using a beta-function, the reactive scalar probability density function (PDF) does not follow an universal shape. A one-point one-time joint composition PDF transport equation can be used to describe the evolution of the scalar PDF. The high-dimensional nature of this PDF transport equation requires the use of a statistical ensemble of notional particles and is directly coupled to the LES flow solver. However, the large grid sizes used in LES simulations will make such Lagrangian simulations computationally intractable. Here we propose the use of a Eulerian version of the transported-PDF scheme for simulating turbulent reactive flows. The direct quadrature method of moments (DQMOM) uses scalar-type equations with appropriate source terms to evolve the sub-filter PDF in terms of a finite number of delta-functions. Each delta-peak is characterized by a location and weight that are obtained from individual transport equations. To illustrate the feasibility of the scheme, we compare the model against a particle-based Lagrangian scheme and a presumed PDF model for the evolution of the mixture fraction PDF. All these models are applied to an experimental bluff-body flame and the simulated scalar and flow fields are compared with experimental data. The DQMOM model results show good agreement with the experimental data as well as the other sub-filter models used.  相似文献   
149.
Monte Carlo simulations of joint probability density function (PDF) approaches have been developed in the past largely with Reynolds averaged Navier Stokes (RANS) applications. Current interests are in the extension of PDF approaches to large eddy simulation (LES). As LES resolves accurately the large scales of turbulence in time, the Monte Carlo simulation and the flow field need to be tightly coupled. A tight coupling can be achieved if the consistency between the scalar field solution obtained via finite-volume (FV) methods and that from the stochastic solution of the PDF is ensured. For nonpremixed turbulent flames with two distinct streams, the local reactive mixture is described by the mixture fraction. A Eulerian Monte Carlo method is developed to achieve a second-order accuracy in the instantaneous filtered mixture fraction that is consistent with the corresponding FV. The performances of the proposed scheme are extensively evaluated using a one-dimensional model. Then, the scheme is applied to two cases with LES. The first one is a non-reacting mixing flow of two different fluids. The second case is the Sandia piloted turbulent flame D with a steady state flamelet model. Both results confirm the consistency of the proposed method to the level of filtered mixture fraction.  相似文献   
150.
By using a large amount of data collected in the atmospheric surface layer, we analyze the probability density functions (PDFs), the probability of return and the moments of wind velocity increments. Results show that the PDFs change from the non-Gaussian long-tailed distributions to Gaussian with the increase of time scales. This is similar to what has been observed and interpreted as an indication of cascade in the fully developed homogeneous and isotropic turbulence. Besides, both the probability of return and the moments are found to be scaling with time scales. We then compare above results with the truncated Lévy flights and the log-normal PDF model. It is found that although both models show the cascade-like behavior in the PDFs and the scaling behavior in the probability of return and the moments under some conditions, they are not good enough for quantitatively describing the random process of wind velocity increments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号