首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
  国内免费   7篇
化学   123篇
物理学   5篇
综合类   7篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   19篇
  2008年   30篇
  2007年   12篇
  2006年   15篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
排序方式: 共有135条查询结果,搜索用时 960 毫秒
101.
A new model is proposed to evaluate the separation performance of nanofiltration (NF) membranes for the mixed salts solution. In the model, the observed transmission of an ion through a NF membrane is applied to express the separation performance of the membrane for the ion in the mixed salts solution, which has a relationship with the total concentration, the equivalent fraction and the species of each ion in the mixed salts solution. The verification of the model was carried out in the permeation experiments of some mixed salts solutions ((1) Na+, Cl and F; (2) Na+, K+ and Cl; (3) Na+, F, Cl and NO3; (4) Na+, Cl, NO3 and SO42−) through three commercial NF membranes (ESNA 1-LF, ESNA 1 and LES 90). According to the permeation experiments of three NF membranes for some binary salts solutions, the competition coefficients of ions were obtained. The model evaluation results agreed quite well with the experimental data. Finally, the model was applied to evaluate the observed transmission of each ion in the mixed salts solution (Na+, F, Cl, NO3 and SO42−) through three NF membranes. The agreement between the model evaluation results and the experimental data indicated that the model is suitable for evaluating the separation performance of three NF membranes for the mixed salts solution.  相似文献   
102.
The influence of inorganic scalants and NOM on nanofiltration (NF) membrane fouling was investigated by a crossflow bench-scale test cell. Mathematical fouling models were used to determine kinetics and fouling mechanisms of NF membrane. It was observed that, with natural organic matter (NOM) at a concentration of 10 mg L−1, divalent cation, i.e. calcium (Ca2+), exhibited greater flux decline than monovalent cation, i.e. sodium (Na+), while solution flux curves dominated cake formation model, especially at high ionic strength. For inorganic scalants of polyanions, i.e. carbonate (CO32−), sulphate (SO42−), and phosphate (PO43−), solution flux curves were relatively fitted well with pore blocking model, possibly due to precipitated species formed and blocked on membrane surface and/or pores. For different divalent cations (i.e. calcium and magnesium (Mg2+)), calcium showed greater flux decline than magnesium, possibly due to higher concentration of precipitated calcium species than that of precipitated magnesium species based on the pC (−log concentration) and pH diagram.  相似文献   
103.
Membrane separations are finding greater use in wastewater treatment because of their efficiency. In order to prove the effectiveness of membrane filtration an applicability study is carried out. Nanofiltration and reverse osmosis membranes are tested under quite different conditions to reduce the chemical oxygen demands (COD) of wastewaters to meet the Council Directive 76/464/EEC release limit. Two kinds of real wastewaters were selected for the investigation. The wastewaters represent extreme different circumstances since the difference between their COD is two orders of magnitude. All of the membranes tested can be applied either to the treatment of wastewater of high COD (pharmaceutical wastewater) or wastewater of low COD (dumpsite leachate), since the different conditions do not change the membrane characteristics. The experimental data show that none of the membranes can decrease the COD to the release limit in one step. However, if two-stage filtrations (nanofiltration followed by reverse osmosis) are accomplished for both of the wastewaters, a total COD reduction of 94% can be achieved. With the application of the two-stage filtration the COD of the wastewater of low COD can be decreased below the release limit but in case of wastewater of the high COD further treatment will be required.   相似文献   
104.
This rapid communication reports a summary of the key findings of preparation and characterization of new polymeric membranes for nanofiltration of organic compounds. A series of nanoporous asymmetric membranes of PEEKWC, a modified poly(etheretherketone) was prepared by means of the dry-wet phase inversion method. In particular, the type and concentration of internal non-solvent were varied in order to obtain membranes for nanofiltration. The optimization of these factors led to reproducible membranes, which were characterized for hydrophobicity, roughness, morphology, surface charge. The performance was studied by doing dead-end filtration experiments with aqueous solutions of uncharged and charged organic compounds. The new polymeric films exhibited interesting performance compared to commercial nanofiltration membranes in terms of retention and relative flux for positively charged organic compounds.  相似文献   
105.
There is a substantial need for novel measurement techniques that enable non-invasive spatially resolved observation of biofouling in nanofiltration (NF) and reverse osmosis (RO) membrane modules. Such measurements will enhance our understanding of the key design and operational parameters influencing biofilm fouling. In this study we demonstrate the first application of nuclear magnetic resonance microscopy (NMR) to a spiral wound reverse osmosis (RO) membrane module. The presented NMR protocols allow the extraction of the evolution with biofouling of (i) the spatial biofilm distribution in the membrane module, (ii) the spatially resolved velocity field and (iii) displacement propagators, which are distributions of molecular displacement of a passive tracer (in our case, water) in the membrane. From these measurements, the effective membrane surface area is quantified. Despite the opaque nature of membrane design, NMR microscopy is shown to be able to provide a non-invasive quantitative measurement of RO membrane biofouling and its impact on hydrodynamics and mass transport. Minimal biofilm growth is observed to have a substantial impact on flow field homogeneity.  相似文献   
106.
Thin-film composite (TFC) nanofiltration (NF) membrane was prepared through the interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) on the polysulphone support membrane. The chemical structure of membrane surface was studied by attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS). Parametric studies were conducted by varying reaction time, curing temperature, curing time and additives in PIP solution for obtaining the optimum polymerization conditions. Systematic performance studies were conducted with different feed solutions, feed concentrations, feed pHs, operating temperatures and pressures. Continuous and comparative tests were also conducted to determine the performance stability and separation efficiency of the thin-film composite NF membrane prepared. High performance thin-film composite NF membrane for the selective sulfate removal from concentrated sodium chloride aqueous with the water permeability coefficient of 75 L/(m2 h MPa) could be prepared under specific conditions. Experimental results on concentrated mixed solution of NaCl and Na2SO4 demonstrated that the NF membrane developed could be successfully used for the removal of sodium sulfate from the concentrated brine of chloralkali industry with high permeate flux, selectivity and performance stability.  相似文献   
107.
Improving the permeate flux but retaining the rejection of thin-film composite(TFC) polyamide nanofiltration(NF) membrane is a high requirement for desalination. In this work, a calcium ion(Ca2+) coordinated polyamide(PA) NF membrane was prepared by directly adding CaCl2 to the piperazine(PIP) aqueous solution during the interfacial polymerization process. Due to the coordination interaction between Ca2+ and the amide bond in PA active layer, the number of hydrogen bonds in the PA active layer was reduced, causing in turn the decrease of physical cross-linking degree. As a consequence, the pore of the PA active layer was enlarged, prominently enhancing the water permeance of NF membrane. With the increase of CaCl2 concentration, the pure water flux of TFC NF increased significantly while the rejection of Na2SO4 decreased sightly. Compared with TFC NF membrane prepared without CaCl2, the permeate flux of the Ca2+ coordinated polyamide NF membrane prepared under optimal conditions was increased by 3-4 folds with Na2SO4 rejection of 95.26%. Meanwhile, such a Ca2+ coordinated PA NF membrane showed a better SO42-/Cl- selectivity.  相似文献   
108.
The streaming potentials of two different nanofiltration membranes were studied with several electrolyte solutions to investigate the influence of salt type and concentration on the zeta potential and kinetic surface charge density of the membranes. The zeta potentials decreased with increasing salt concentration, whereas the kinetic surface charge densities increased. The kinetic surface charge densities could be described by Freundlich isotherms, except in one case, indicating that the membranes had a negligible surface charge. The kinetic surface charge density observed was caused by adsorbed anions. Salt retention measurements showed different mechanisms for salt separation for the two investigated membranes. One membrane showed a salt retention that could be explained by a Donnan exclusion type of separation mechanism, whereas for the other membrane the salt rejection seemed to be a combination of size and Donnan excluion. Comparing the results obtained by the streaming potential measurements with those of the retention measurements, it could be concluded that the membrane with the highest kinetic surface charge density showed the Donnan exclusion type of separation, whereas the membrane with the lower surface charge density showed a separation mechanism that was not totally determined by Donnan exclusion, size effects seemed to play a role as well.  相似文献   
109.
The aim of this article is to review the recent progress in the coupling of membrane separation and electrochemical technologies for water treatment. Process integration strategies have been classified in three groups. The first group deals with electrocoagulation and electrooxidation as pretreatment of membrane separation, in most cases aimed at reducing membrane fouling and decay of permeate flux of porous ultrafiltration membranes. The second group is dedicated to electrooxidation as remediation treatment for nanofiltration and reverse osmosis concentrates, which accumulate priority pollutants and emerging contaminants. Finally, the article evaluates the optimal integration of technologies using process systems engineering tools, for producing a single purified water stream, considering not only the minimization of the energy consumption but also of the total costs. Overall, it is concluded that the preconcentration strategy provides a remarkable enhancement of electrooxidation performance to degrade persistent pollutants.  相似文献   
110.
以细菌纤维素为原材料,先后通过NaIO4和NaHSO3氧化还原反应制备了表面部分磺酸化的细菌纤维素(SBC)纳米纤维.利用SBC纳米纤维多孔膜替代传统的超滤膜作为支撑底膜,结合界面聚合反应调控制得复合纳滤膜,并对其纳滤性能进行研究.结果表明,制备得到了对Na2SO4和MgSO4具有高截留率(>96%)和超高分离通量(>320 L·m-2·h-1·MPa-1)的新型纳滤膜.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号