首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   33篇
  国内免费   66篇
化学   507篇
综合类   18篇
数学   1篇
物理学   25篇
综合类   263篇
  2023年   5篇
  2022年   18篇
  2021年   32篇
  2020年   16篇
  2019年   19篇
  2018年   7篇
  2017年   19篇
  2016年   14篇
  2015年   19篇
  2014年   13篇
  2013年   21篇
  2012年   49篇
  2011年   26篇
  2010年   25篇
  2009年   26篇
  2008年   34篇
  2007年   50篇
  2006年   33篇
  2005年   38篇
  2004年   35篇
  2003年   35篇
  2002年   36篇
  2001年   28篇
  2000年   28篇
  1999年   24篇
  1998年   16篇
  1997年   28篇
  1996年   28篇
  1995年   14篇
  1994年   13篇
  1993年   12篇
  1992年   10篇
  1991年   9篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有814条查询结果,搜索用时 15 毫秒
91.
研究十六烷基三甲基溴化铵(CTAB)-辛烷-己醇反胶束体系固定化醇脱氢酶(ADH)的制备及应用。考察了含水量、CTAB和己醇用量对于ADH固定化的影响。对游离酶和固定化酶的催化动力学性质研究表明:酶促反应的最适pH值分别为8.2和8.8,最适温度分别为31℃和20℃,米氏常数分别为12mmol/L和7mmol/L。30℃时,游离酶存放150min后失活90%,固定化酶失活50%,表明反胶束固定化ADH有较好的热稳定性。应用此体系测定了试样中乙醇的含量。  相似文献   
92.
《Electroanalysis》2017,29(4):950-954
Biofuel cells based on electrocatalytic oxidation of NADH and reduction of H2O2 have been prepared using carbon fiber electrodes functionalized with graphene nano‐flakes. The electrochemical oxidation of NADH was catalyzed by Meldola's blue (MB), while the reduction of H2O2 was catalyzed by hemin, both catalysts were adsorbed on the graphene flakes due to their π‐π staking. In the next set of experiments, the MB‐ and hemin‐electrodes were additionally modified with glucose dehydrogenase (GDH) and glucose oxidase (GOx), respectively. The enzyme catalyzed reactions in the presence of glucose, NAD+ and O2 resulted in the production of NADH and H2O2 in situ. The produced NADH and H2O2 were oxidized and reduced, respectively, at the bioelectrocatalytic electrodes, thus producing voltage and current generated by the biofuel cell. The enzyme‐based biofuel cells operated in a human serum solution modelling an implantable device powered from the natural biofluid. Finally, two enzyme‐based biofuel cell connected in series and operating in the serum solution produced electrical power sufficient for activation of an electronic watch used as an example device.  相似文献   
93.
Ripostatin is a promising antibiotic that inhibits RNA polymerase by binding to a novel binding site. In this study, the characterization of the biosynthetic gene cluster of ripostatin, which is a peculiar polyketide synthase (PKS) hybrid cluster encoding cis‐ and trans‐acyltransferase PKS genes, is reported. Moreover, an unprecedented mechanism for phenyl acetic acid formation and loading as a starter unit was discovered. This phenyl‐C2 unit is derived from phenylpyruvate (phenyl‐C3) and the mechanism described herein explains the mysterious loss of one carbon atom in ripostatin biosynthesis from the phenyl‐C3 precursor. Through in vitro reconstitution of the whole loading process, a pyruvate dehydrogenase like protein complex was revealed that performs thiamine pyrophosphate dependent decarboxylation of phenylpyruvate to form a phenylacetyl‐S ‐acyl carrier protein species, which is supplied to the subsequent biosynthetic assembly line for chain extension to finally yield ripostatin.  相似文献   
94.
Single nucleotide polymorphisms (SNPs) are the most common genetic polymorphisms and play a major role in many inherited diseases. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is one of the enzymes involved in folate metabolism. In the present study, the functional and structural consequences of nsSNPs of human MTHFD1 gene was analyzed using various computational tools like SIFT, PolyPhen2, PANTHER, PROVEAN, SNAP2, nsSNPAnalyzer, PhD-SNP, SNPs&GO, I-Mutant, MuPro, ConSurf, InterPro, NCBI Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, FT Site and PyMol. Out of 327 nsSNPs form human MTHFD1 gene, total 45 SNPs were predicted as functionally most significant SNPs, among which 17 were highly conserved and functional, 17 were highly conserved and structural residues. Among 45 most significant SNPs, 15 were predicted to be involved in post translational modifications. The p.Gly165Arg may interfere in homodimer interface formation. The p.Asn439Lys and p.Asp445Asn may interfere in binding interactions of MTHFD1 protein with cesium cation and potassium. The two SNPs (p.Asp562Gly and p.Gly637Cys) might interfere in interactions of MTHFD1 with ligand.  相似文献   
95.
In this work we analyzed the specificity of the amide VI band for different types of secondary structure elements in protein structures. This band involves the bending motion of the CO group of the peptide chain that is typically observed in the spectral region from 590 to 490 cm−1. The infrared absorbance spectra of a set of polypeptide model compounds of well known secondary structure was obtained at defined pH, including poly (l-lysine), poly (l-tyrosine), poly (l-alanine) and poly (l-histidine). In addition spectra of membrane proteins from the respiratory chain, namely the NADH:ubiquinone oxidoreductase, the cytochrome c oxidase and its CuA fragment, the cytochrome bc1 complex, a Rieske-type protein and in addition myoglobin, have been comparatively investigated. The systematic analysis of the amide VI band of the polypeptides and the proteins allowed correlating the signal appearing at ∼525 cm−1 to α-helical structures and signals at ∼545 cm−1 to β-sheet contributions. Random coils have been found to contribute at ∼535 cm−1 while the β-turns were observed at ∼560 cm−1.  相似文献   
96.
Only two enzymes are capable of directly reducing CO2: CO dehydrogenase, which produces CO at a [NiFe4S4] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2-reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.  相似文献   
97.
The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff’s bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.  相似文献   
98.
Background: Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. Methods: Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. Results: The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD’s catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. Conclusions: Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.  相似文献   
99.
Excessive glutamate neurotransmitters result in oxidative neurotoxicity, similar to neurodegeneration. An indigenous berry of Thailand, Cleistocalyx nervosum var. paniala (CNP), has been recognized for its robust antioxidants. We investigated the effects and mechanisms of CNP fruit extracts on antioxidant-related survival pathways against glutamate-induced neurotoxicity. The extract showed strong antioxidant capability and had high total phenolic and flavonoid contents, particularly resveratrol. Next, the protective effects of the CNP extract or resveratrol on the glutamate-induced neurotoxicity were examined in HT22 hippocampal cells. Our investigation showed that the pretreatment of cells with the CNP extract or resveratrol attenuated glutamate-induced neuronal death via suppression of apoptosis cascade by inhibiting the levels of cleaved- and pro-caspase-3 proteins. The CNP extract and resveratrol suppressed the intracellular ROS by increasing the mRNA expression level of antioxidant enzymes (SODs, GPx1, and CAT). We found that this extract and resveratrol significantly increased SIRT1 expression as a survival-related protein. Moreover, they also promoted the activity of the Nrf2 protein translocation into the nucleus and could bind to the promoter containing the antioxidant response element, inducing the expression of the downstream GPx1-antioxidant protein. Our data illustrate that the CNP extract and resveratrol inhibit apoptotic neuronal death via glutamate-induced oxidative neurotoxicity in HT22 cells through the activation of the SIRT1/Nrf2 survival mechanism.  相似文献   
100.
味精生产排出的废液对白菜生长的影响   总被引:7,自引:1,他引:6  
味精废液是一个污染源,但它又含有植物生长所需的营养物质,研究结果表明,味业认可促进白菜生长,增加叶的长度和宽度,增加白菜地上部分的鲜重和干重;提高叶片可溶性蛋白质含量、叶绿素含量和硝酸还原酶活性,但单位鲜重的可溶性糖含量低于对照;施用味精废液的白菜生产比不上施用复合肥的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号