首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1068篇
  免费   31篇
  国内免费   18篇
化学   223篇
晶体学   1篇
力学   13篇
综合类   3篇
数学   13篇
物理学   545篇
综合类   319篇
  2024年   3篇
  2023年   33篇
  2022年   44篇
  2021年   32篇
  2020年   34篇
  2019年   38篇
  2018年   22篇
  2017年   41篇
  2016年   42篇
  2015年   53篇
  2014年   87篇
  2013年   58篇
  2012年   54篇
  2011年   81篇
  2010年   59篇
  2009年   53篇
  2008年   49篇
  2007年   58篇
  2006年   46篇
  2005年   42篇
  2004年   34篇
  2003年   26篇
  2002年   29篇
  2001年   13篇
  2000年   11篇
  1999年   18篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1987年   3篇
  1980年   1篇
排序方式: 共有1117条查询结果,搜索用时 15 毫秒
81.
To date, luminescent materials have been preferably used for non-contact optical thermometers. In this manner, novel red-emitting Ba2Y0.8Eu0.2NbO6:Mn4+ (BYEN:Mn4+) phosphors were designed for multi-type non-contact luminescent thermometers based on the dual-emission states and temperature-dependent lifetime (TDL) models. In the temperature range of 303–483 K, the sensing sensitivities based on the dual-emission states of (5D07F2, 2Eg4A2g) and (5D07F1, 2Eg4A2g) were estimated. Especially, the maximum absolute sensing sensitivity (Sa) was found to be about 0.1558 K-1 for the BYEN:0.007Mn4+ phosphor based on the 5D07F1 and 2Eg4A2g positions. This phosphor also exhibited good relative sensing sensitivity (Sr) (0.0186 K-1) based on the 5D07F2 and 2Eg4A2g states. Besides, the relative sensing sensitivities (SR) at 5D07F1 and 2Eg4A2g transitions were estimated to be 0.0034 and 0.0194 K-1, respectively with the help of the TDL technique. In the light of these results, novel red-emitting Ba2Y0.8Eu0.2NbO6:Mn4+ phosphors are expected to be a potentially attractive candidate for applications in multi-type luminescent thermometers. Finally, a novel unique polydimethylsiloxane film exhibiting tricolor-luminescent emissions was introduced and further suggested for high-security anti-counterfeiting.  相似文献   
82.
与一般有机染料分子相比,半导体材料量子点具有优异的光学性能,在多个领域得到了广泛的应用.量子点具有窄而对称且可调的发射波长、宽激发强吸收、抗光漂白能力强以及水溶性好等诸多优势,引起了研究者广泛关注.为了增加量子点的斯托克斯位移从而很好地避免量子点的自猝灭现象,引入掺杂物是一种很有效的方式.掺杂量子点不仅保留了量子点原有的优点,而且还赋予量子点额外的优异性能.如Mn掺杂ZnS量子点生物相容性好,不含Cd和Hg等有害元素,而且Mn2+的加入使其具有优异的室温磷光特性.磷光检测能很好地避开生物背景荧光的干扰,使得Mn掺杂ZnS量子点能够广泛应用于磷光生物分析.本文综述了Mn掺杂ZnS量子点在室温磷光分析中的研究进展,着重介绍了几种具有启发意义的设计策略,包括其发光机理以及应用于离子、分子以及生物大分子等的检测.  相似文献   
83.
稀土离子(Er3+)可与荧光石墨烯量子点(GQDs)表面的含氧基团发生配位,在Er3+介导下形成高配位数的GQDs/Er3+配合物,引起GQDs聚集而使其荧光减弱.凝血酶(Tb)中的氮和氧等原子可与Er3+发生配位作用,从而与GQDs竞争结合Er3+,减弱了GQDs与Er3+的作用而使其荧光恢复.通过检测GQDs的荧光即可实现对Tb活性的高灵敏分析,构建了基于Er3+介导GQDs荧光开关的Tb传感方法,采用透射电镜、原子力显微镜、红外吸收光谱以及荧光光谱等对传感机理进行了研究.本方法对Tb的检出限低至0.049 nmol/L,其它蛋白质对Tb检测无明显干扰,实际样品中Tb加标回收率为98.0%~105.3%,相对标准偏差为0.6%~4.2%.  相似文献   
84.
Formaldehyde is one of the simplest reactive carbonyl species. In view of the harmfulness of formaldehyde in nature and humans, it is of great signifi cance to further elucidate roles and functions of formaldehyde by a noninvasive detection approach. Fluorescent probes have become a popular tool to track and detect formaldehyde in vitro and in vivo, which have attracted more and more interest recently. This review focuses on various reaction mechanisms to design the fluorescent probes for detecting formaldehyde.  相似文献   
85.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   
86.
This study investigated the anti-hepatoma molecular mechanism of Alisol G, which is an effective component of the Chinese medicine Alisma orientalis, in the presence of metal ions Cu2+ and Fe3+ based on c-myc DNA. Here, a combination of Alisol G and metal ions (Cu2+, Fe3+) to augment anti-hepatoma efficiencies of Alisol G has been identified by methyl thiazolyl tetrazolium (MTT) assay. Network pharmacology revealed that c-myc DNA was the potential target of Alisol G with respect to its anti-hepatoma effects. By performing multi-spectroscopic analyses, we showed that the interaction of Alisol G with c-myc DNA was a process of static quenching. The binding constants and thermodynamic constants indicated that a 1:1 complex was formed between Alisol G and c-myc DNA. Moreover, metal ions strengthened the interaction between Alisol G and c-myc DNA. Molecular docking and molecular dynamics simulation further unveiled that the higher binding affinity between Alisol G-Fe3+ complex and c-myc DNA as compared to Alisol G-Cu2+ complex. This probably resulted from the polarization of metal ions and the structural flexion of Alisol G. The C22-O31-H76 and C18-O32-H77 of Alisol G were key groups in the interaction with c-myc DNA. Addition of metal ion, had greatly changed the c-myc DNA-binding domain of Alisol G while didn’t affect the kinetic stability of the interaction, thus facilitating the insertion of Alisol G into c-myc DNA A-T base pair. Importantly, the DG113 of c-myc DNA was important for its binding to metal ions. Together, our findings suggested that Alisol G in combination with metal ions may be an efficient and promising option for the treatment of liver cancer.  相似文献   
87.
《Electrophoresis》2017,38(3-4):417-428
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre‐B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS). Using nanoLC‐MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non‐growing LD ALL3 cells and their involvement in the stimulatory activity are discussed.  相似文献   
88.
We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti‐infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae . The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross‐linker is used. This results in soluble low‐molecular‐weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug‐discovery platform and class of materials to target Gram‐positive pathogens.  相似文献   
89.
As an emerging class of promising porous materials, the development of two-dimensional conductive metal organic frameworks (2D c-MOFs) is hampered by the few categories and tedious synthesis of the specific ligands. Herein, we developed a nonplanar hexahydroxyl-functionalized Salphen ligand (6OH-Salphen) through a facile two-step synthesis, which was further applied to construct layered 2D c-MOFs through in situ one pot synthesis based on the synergistic metal binding effect of the N2O2 pocket of Salphen. Interestingly, the C2v-symmetry of ligand endows Cu-Salphen-MOF with periodically heterogeneous pore structures. Benefitting from the higher metal density and shorter in-plane metal-metal distance, Cu-Salphen-MOF showcased excellent NO2 sensing performance with good sensitivity, selectivity and reversibility. The current work opens up a new avenue to construct 2D c-MOF directly from nonplanar ligands, which greatly simplifies the synthesis and provides new possibilities for preparing different topological 2D c-MOF based functional materials.  相似文献   
90.
The electronic conductivity (EC) of metal–organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2O on the EC of MOFs is rarely reported. We explored the effect of H2O on the EC in the MOFs (NH2)2-MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2SO4@(NH2)2-MIL-125 by H2O was observed. Brønsted acid–base pairs formed with the −NH2 groups, and H2SO4 played an important role in promoting the charge transfer from H2O to the MOF. Based on H2SO4@(NH2)2-MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号