首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1451篇
  免费   39篇
  国内免费   134篇
化学   1160篇
晶体学   1篇
力学   56篇
综合类   4篇
数学   20篇
物理学   179篇
综合类   204篇
  2024年   8篇
  2023年   60篇
  2022年   24篇
  2021年   54篇
  2020年   36篇
  2019年   24篇
  2018年   8篇
  2017年   21篇
  2016年   26篇
  2015年   28篇
  2014年   61篇
  2013年   40篇
  2012年   52篇
  2011年   63篇
  2010年   53篇
  2009年   112篇
  2008年   175篇
  2007年   86篇
  2006年   98篇
  2005年   79篇
  2004年   76篇
  2003年   38篇
  2002年   43篇
  2001年   43篇
  2000年   29篇
  1999年   33篇
  1998年   29篇
  1997年   29篇
  1996年   47篇
  1995年   27篇
  1994年   21篇
  1993年   19篇
  1992年   14篇
  1991年   13篇
  1990年   13篇
  1989年   12篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1981年   2篇
  1978年   1篇
  1970年   1篇
排序方式: 共有1624条查询结果,搜索用时 15 毫秒
991.
Membrane materials with the excellent thermal, optical, electrical and chemical properties have attracted significant attention in numerous research fields recently. However, while being used to construct the membrane structures, the mechanical behaviors of membrane materials are more foundational than the other properties in evaluating the structure safety. This paper thus proposes a nonlinear stress-strain constitutive model for revealing the viscoelastic behaviors of membrane materials under uniaxial tensile loading. To this end, the constitutive equations for expressing the uniaxial tensile stress-strain relationships of viscoelastic materials are established gradually from the kinematic equations of the generalized Maxwell model that includes several basic Maxwell models and one basic spring element. Meanwhile, the uniaxial tensile tests of two typical viscoelastic membrane materials were carried out in order to examine the proposed constitutive model. The constitutive model parameters of the stress-strain properties of both membrane materials are accurately identified using the least square method. By comparing the true stress-strain curves between experimental results and constitutive models, good agreements with the maximum differences of 4.67% and 3.41% are acquired for the two employed viscoelastic membrane materials, respectively. These observations are able to validate the accuracy and efficiency of this proposed constitutive model in predicting the uniaxial stress-strain behaviors of viscoelastic membrane materials, which are significant in the nonlinear structural analysis of membrane structures.  相似文献   
992.
993.
Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from − 1 for the most abundant anionic lipids such as phosphatidylserine, to near − 7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control.  相似文献   
994.
Bilayers and monolayers are excellent models of biological membranes. The constituents of the biological membranes such as lipids, cholesterols and proteins are chiral. Chiral molecules are abundant in nature (protein, nucleic acid and lipid). It is obvious that relationship between chirality and morphology (as well as function) of biological membrane is of interest for its fundamental importance and has technological implication regarding various membrane functions. The recent years have witnessed that a number of experimental studies in biomimetic systems have shown fascinating morphologies where chirality of the constituent molecule has decisive influence. Significant progress is made towards the understanding of these systems from the theoretical and computational studies. Helfrich's concept of intrinsic force arising from chirality is a milestone in understanding the biomimetic system such as bilayer and the related concepts, further progresses in molecular understanding made in recent years and experimental studies revealing the influence of chirality on morphology are the focus of the present review. Helfrich's concept of intrinsic force arising due to chirality is useful in understanding two-dimensional bilayers and one-dimensional monolayers and related mimetic systems. Various experimental techniques are used, which can probe the molecular architecture of these mimetic systems at different length scales and both macroscopic (thermodynamic) as well as microscopic (molecular) theories are developed. These studies are aimed to understand the role of chirality in the molecular interaction when the corresponding molecule is present in an aggregate. When one looks into the variety of morphologies exhibited by three-dimensional bilayer and two-dimensional monolayer, the later types of systems are more exotic in the sense that they show more diversity and interesting chiral discrimination. Helfrich's concept of intrinsic force may be considered useful in both cases. The intrinsic force due to chirality is the decisive factor in determining morphology which is explained by molecular approaches. Finally, biological and technological implications of such morphological variations are briefly mentioned.  相似文献   
995.
利用TiO2富集、超滤膜滤过实现了选择性富集和分离磷酸化肽和含唾液酸的N-链接糖肽.首先选取截留分子量为1×104的超滤膜分离糖肽和磷酸化肽,然后利用酪蛋白和牛血清白蛋白的酶解物验证所建立的方法,该方法的最低检出限是0.16 pmol.将上述方法应用于肺癌患者的唾液检测,成功检测并鉴定到8个磷酸化肽和5个糖肽.本方法可有效提高磷酸化肽和糖肽检测的选择性和灵敏度,为疾病生物标志物的检测提供了新方法.  相似文献   
996.
朱宝库 《高分子科学》2014,32(2):143-150
Porous PVDF blend membranes with good hydrophilicity and a symmetric structure were prepared by the phase inversion method using amphiphilic brush-like copolymers, P(MMA-r-PEGMA), as hydrophilic additive and triethylphosphate (TEP) as solvent. P(MMA-r-PEGMA) was synthesized by radical polymerization in TEP. Then the obtained amphiphilic copolymer solution was mixed with PVDF and TEP to prepare the dope solution. The effects of P(MMA-r-PEGMA) content and coagulation composition on membrane morphologies were investigated using scanning electron microscopy (SEM). The results demonstrated that, even blended with amphiphilic copolymers, a symmetric structure can be formed. Hollow fiber membranes with a mainly symmetric structure were also fabricated. The dry hollow fiber membranes showed good hydrophilicity, high flux and good rejection performance because of their hydrophilic surface and pores wall.  相似文献   
997.
The present work has for the first time described nano-electromembrane extraction (nano-EME). In nano-EME, five basic drugs substances were extracted as model analytes from 200 μL acidified sample solution, through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE), and into approximately 8 nL phosphate buffer (pH 2.7) as acceptor phase. The driving force for the extraction was an electrical potential sustained over the SLM. The acceptor phase was located inside a fused silica capillary, and this capillary was also used for the final analysis of the acceptor phase by capillary electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000–193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction. This corresponded to 100-times enrichment per minute of nano-EME. Nano-EME was found to be a very soft extraction technique, and about 99.2–99.9% of the analytes remained in the sample volume of 200 μL. The SLM could be reused for more than 200 nano-EME extractions, and memory effects in the membrane were avoided by effective electro-assisted cleaning, where the electrical potential was actively used to clean the membrane.  相似文献   
998.
We combined quantum mechanics/molecular mechanics calculations with molecular dynamics simulations to study the addition of O2 to the pentadienyl radical of arachidonic acid (AA) catalyzed by the Leu597Val and Leu597Ala mutants of rabbit 15‐lipoxygenase (15‐rLO). In the Leu597Val mutant, the addition of O2 to C15 of AA is the predominant path, although it reduces the C15/C11 product ratio by almost ten times with respect to the wildtype enzyme. The S stereochemistry is kept. Mutation to Ala causes just the opposite effect: regiospecificity favoring addition to C15 is somewhat sharper than that in the wildtype, but the stereochemistry is R. This is because the extra space created by the mutation to Ala is big enough for AA to move so that it can adopt an alternative binding mode, and this opens new feasible paths for the attack of O2. So, we showed that the Leu597Ala mutant of 15r‐LO works as an aspirin‐acetylated cyclooxygenase‐2, which makes 15‐(R)‐ hydroperoxyeicosatetraenoic acid.  相似文献   
999.
Barley seedlings are rich in flavones that can have positive effects on people with antihypoxia and antifatigue. Lutonarin and saponarin are two major flavonoid glycosides that have unique structures in barley seedlings. This study presents a new approach for the preparation of lutonarin and saponarin from barely seedlings by membrane separation technology and preparative high‐performance liquid chromatography. Preparative conditions of these two flavonoid glycosides by membrane separation technology were studied using response surface methodology. Under the optimized conditions, the total contents of these two flavonoid glycosides amounts to 17.0%.  相似文献   
1000.
Propagation of a change in a potential difference between two aqueous phases (W1 and W2) across a membrane was examined by using three membrane cells (A, B and C). At first, the cell A was electrically connected with the cell B by controlling the ionic compositions. By changing the connection with the cell A from the cell B to the cell C indicating the different membrane potential, the change of the membrane potential was propagated. The delay and decrement of the propagation was observed by setting capacitors or resistors in the electric circuit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号