首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   23篇
  国内免费   11篇
化学   9篇
力学   5篇
综合类   5篇
数学   204篇
物理学   14篇
综合类   318篇
  2024年   3篇
  2023年   4篇
  2022年   10篇
  2021年   6篇
  2020年   12篇
  2019年   10篇
  2018年   13篇
  2017年   10篇
  2016年   7篇
  2015年   14篇
  2014年   21篇
  2013年   17篇
  2012年   25篇
  2011年   42篇
  2010年   26篇
  2009年   33篇
  2008年   43篇
  2007年   45篇
  2006年   49篇
  2005年   20篇
  2004年   27篇
  2003年   15篇
  2002年   20篇
  2001年   19篇
  2000年   10篇
  1999年   13篇
  1998年   7篇
  1997年   9篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1976年   1篇
排序方式: 共有555条查询结果,搜索用时 10 毫秒
11.
We prove quadratic upper bounds on the order of any autotopism of a quasigroup or Latin square, and hence also on the order of any automorphism of a Steiner triple system or 1‐factorization of a complete graph. A corollary is that a permutation σ chosen uniformly at random from the symmetric group will almost surely not be an automorphism of a Steiner triple system of order n, a quasigroup of order n or a 1‐factorization of the complete graph . Nor will σ be one component of an autotopism for any Latin square of order n. For groups of order n it is known that automorphisms must have order less than n, but we show that quasigroups of order n can have automorphisms of order greater than n. The smallest such quasigroup has order 7034. We also show that quasigroups of prime order can possess autotopisms that consist of three permutations with different cycle structures. Our results answer three questions originally posed by D.  Stones.  相似文献   
12.
A q‐ary code of length n, size M, and minimum distance d is called an code. An code with is said to be maximum distance separable (MDS). Here one‐error‐correcting () MDS codes are classified for small alphabets. In particular, it is shown that there are unique (5, 53, 3)5 and (5, 73, 3)7 codes and equivalence classes of (5, 83, 3)8 codes. The codes are equivalent to certain pairs of mutually orthogonal Latin cubes of order q, called Graeco‐Latin cubes.  相似文献   
13.
A k×n Latin rectangle on the symbols {1,2,…,n} is called reduced if the first row is (1,2,…,n) and the first column is T(1,2,…,k). Let Rk,n be the number of reduced k×n Latin rectangles and m=⌊n/2⌋. We prove several results giving divisors of Rk,n. For example, (k−1)! divides Rk,n when k?m and m! divides Rk,n when m<k?n. We establish a recurrence which determines the congruence class of for a range of different t. We use this to show that Rk,n≡((−1)k−1(k−1)!)n−1. In particular, this means that if n is prime, then Rk,n≡1 for 1?k?n and if n is composite then if and only if k is larger than the greatest prime divisor of n.  相似文献   
14.

In this paper properties and construction of designs under a centered version of the -discrepancy are analyzed. The theoretic expectation and variance of this discrepancy are derived for random designs and Latin hypercube designs. The expectation and variance of Latin hypercube designs are significantly lower than that of random designs. While in dimension one the unique uniform design is also a set of equidistant points, low-discrepancy designs in higher dimension have to be generated by explicit optimization. Optimization is performed using the threshold accepting heuristic which produces low discrepancy designs compared to theoretic expectation and variance.

  相似文献   

15.
We provide two new constructions for pairs of mutually orthogonal symmetric hamiltonian double Latin squares. The first is a tripling construction, and the second is derived from known constructions of hamilton cycle decompositions of when is prime.  相似文献   
16.
Let mnk. An m × n × k 0‐1 array is a Latin box if it contains exactly m n ones, and has at most one 1 in each line. As a special case, Latin boxes in which m = n = k are equivalent to Latin squares. Let be the distribution on m × n × k 0‐1 arrays where each entry is 1 with probability p, independently of the other entries. The threshold question for Latin squares asks when contains a Latin square with high probability. More generally, when does support a Latin box with high probability? Let ε > 0. We give an asymptotically tight answer to this question in the special cases where n = k and , and where n = m and . In both cases, the threshold probability is . This implies threshold results for Latin rectangles and proper edge‐colorings of Kn,n.  相似文献   
17.
The original article to which this erratum refers was correctly published online on 1 December 2011. Due to an error at the publisher, it was then published in Journal of Combinatorial Designs 20: 124–141, 2012 without the required shading in several examples. To correct this, the article is here reprinted in full. The publisher regrets this error. We prove that for all odd there exists a latin square of order 3m that contains an latin subrectangle consisting of entries not in any transversal. We prove that for all even there exists a latin square of order n in which there is at least one transversal, but all transversals coincide on a single entry. A corollary is a new proof of the existence of a latin square without an orthogonal mate, for all odd orders . Finally, we report on an extensive computational study of transversal‐free entries and sets of disjoint transversals in the latin squares of order . In particular, we count the number of species of each order that possess an orthogonal mate. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 344–361, 2012  相似文献   
18.
建立等重方阵的概念,并运用它阐述幻方、2次幻方、3次幻方及中心对称互补幻方的充要条件,根据这些结论构作出一些8阶、9阶2次中心对称互补幻方.  相似文献   
19.
Latin hypercube designs have been found very useful for designing computer experiments. In recent years, several methods of constructing orthogonal Latin hypercube designs have been proposed in the literature. In this article, we report some more results on the construction of orthogonal Latin hypercubes which result in several new designs.  相似文献   
20.
In 1779 Euler proved that for every even n there exists a latin square of order n that has no orthogonal mate, and in 1944 Mann proved that for every n of the form 4k + 1, k ≥ 1, there exists a latin square of order n that has no orthogonal mate. Except for the two smallest cases, n = 3 and n = 7, it is not known whether a latin square of order n = 4k + 3 with no orthogonal mate exists or not. We complete the determination of all n for which there exists a mate-less latin square of order n by proving that, with the exception of n = 3, for all n = 4k + 3 there exists a latin square of order n with no orthogonal mate. We will also show how the methods used in this paper can be applied more generally by deriving several earlier non-orthogonality results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号