首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  国内免费   6篇
化学   69篇
物理学   11篇
综合类   34篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   15篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  1998年   1篇
  1997年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
31.
利用PFT-NMR 核磁共振波谱仪测定了金银花特征提取物的13C NMR图谱,对金银花提取物的13C NMR指纹图谱进行了解析,与其有效成分绿原酸进行了比较,获得了金银花提取物的特征峰,并比较了不同金银花的优劣. 结果表明不同金银花提取物(M1, M2, Z1, Z2)的13C NMR指纹图谱都显示出绿原酸的特征共振峰,并具有很好的重现性和高度的特征性,可以成为金银花真伪鉴别的依据;优质(M1, Z1)与劣质(劣质M1,劣质Z1)金银花13C NMR图谱的差异进一步说明13C NMR指纹图谱可作为鉴别金银花质量的依据.  相似文献   
32.
包结物晶析法选择分离辛夷挥发油中1,8-桉叶素   总被引:6,自引:1,他引:5  
主客体化学的分子识别在同分异构体选择分离、外消旋异构体光学拆分中已有广泛研究[1~3].我们利用中草药挥发油中化学组分的分子形状、几何拓扑性质、官能团数量和键力性质的不同,选定主体分子对挥发油中某一组分进行分子识别,并以结晶的形式从挥发油体系中离析出来,达到选择分离单一挥发油化学组分的目的[4~7].本文利用主体分子1,1,6,6-四苯基-2,4-己二炔-1,6-二醇(A)作为主体分子[8],以辛夷挥发油为研究对象,其主要成分1,8-桉叶素(B)为分子识别的客体分子,与化合物A形成稳定的包结物晶体(A+B),并从辛夷挥发油中析出,得到纯度为100%的…  相似文献   
33.
山银花花色类型较少,常规品种在不同发育阶段依次呈现出绿色、白色和黄色。山银花中的色素主要有叶绿素、类胡萝卜素和类黄酮。本文对山银花花色类型、花色素的种类及其含量与花色的关系、不同花色时期绿原酸含量的变化、类黄酮生物合成途径相关基因表达对花色的影响等进行综述,并对今后山银花花色的研究方向进行展望,为山银花花色形成机理提供参考。  相似文献   
34.
A highly sensitive and specific method, based on capillary high performances liquid chromatography coupled with single quadrupole mass spectrometry using electrospray ionization (capillary HPLC-ESI/MS), is proposed for the identification and quantification of iridoid glycosides in the flower buds of five Lonicera species. A Zorbax SB-C18 (0.3 mm × 150 mm, 5 μm) capillary column and a gradient elution with methanol-acetonitrile-aqueous acetate acid were utilized. The most intensive electrospray ionisation signals were found in the negative ion spectra owing to CH3COO adducts. Eight iridoid glycosides derived from the flower buds of Lonicera species were analyzed by mass spectrometry: sweroside (IG1), 7-O-ethyl sweroside (IG2), 7-epi vogeloside (IG3), secoxyloganin (IG4), secoxyloganin 7-butyl ester (IG5), dimethyl-secologanoside (IG6), centauroside (IG7), and loganin (IG8) using combined information on retention time, the molecular ion mass and fragment ion masses. Detection limits were lower than 1.9 ng/mL in selected ion monitoring (SIM) mode and all calibration curves showed good linear regression (r2 > 0.9938) within test ranges. The validated method was successfully applied to analyze eight iridoid glycosides in the flower buds of five Lonicera species and provided a new basis of assessment on quality of Flos Lonicerae.  相似文献   
35.
    
Lung cancer shows the highest incidence rate in the world. Thus, it has become increasingly important to find therapeutic drugs to treat lung cancer. Farfarae Flos (FF) has been used in traditional Chinese medicine to treat pulmonary diseases such as cough, bronchitis and asthmatic disorders. In this study, the anti-proliferation effects of petroleum extracts of FF (PEFF) on Lewis lung cancer cells and the corresponding mechanisms were studied using cell metabolomics. Fifteen differential metabolites in the cell extracts and the corresponding medium related to the anti-proliferation effect of PEFF were identified, which were probably involved in pyruvate metabolism and glycine, serine and threonine metabolism. For the cellular uptake compounds in PEFF, six metabolites derived from two prototype compounds were also tentatively identified by UHPLC-Q-Orbitrap high-resolution MS. Network pharmacology analysis demonstrated that the anti-proliferation mechanism of PEFF was also probably related to the target genes, including, Aurora-A, glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase P 1 (GSTP1), progesterone receptor and heme oxygenase-1 (HO-1), and further associated with the proteoglycans and PI3K/Akt signaling pathway. Cell metabolomics and network pharmacology analysis provided a holistic method to investigate the anti-proliferation mechanisms of PEFF. However, further studies were still needed to validate the potential target genes, pathways and active compounds in PEFF.  相似文献   
36.
Ethanol precipitation plays a major role in the pretreatment of Flos Lonicerae Japonicae of Qingkailing injection, and is also one of the most popular purification techniques in Chinese herbal medicines. In order to monitor and have a better understanding of the ethanol precipitation process, a PLS model was built based on NIR spectroscopy and HPLC analysis of chlorogenic acid content within the framework of FDA's PAT initiative. Nevertheless, due to the complex mechanism of and the raw materials’ natural variability introduced into the ethanol precipitation process, it was unable to foresee the variations in new batches which may jeopardize the robustness of the established model. Therefore, based on the simple interval calculation (SIC) theory, a new model expansion updating strategy which could continuously expand the variation coverage of the calibration model along with the batch proceeding of ethanol precipitation process was proposed. Effects of model updating were validated by an individual batch with 60 samples. After two times of updating, the root mean squared error of prediction (RMSEP) decreased from 0.268 mg mL−1 to 0.199 mg mL−1, while the insiders in the object status plot (OSP) increased from 44 to 58, demonstrating the good performance of the proposed approach.  相似文献   
37.
    
Alcoholic liver disease is currently the most clinically concerning liver disease, which occurs from chronic alcohol abuse. Flos Puerariae and Semen Hoveniae have been used to treat alcohol drinking excessively for thousands of years in China. In this study, the ethanol extract of the medicine pair was qualitatively and quantitatively analyzed by high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry. First, the high-performance liquid chromatography fingerprint was established to obtain the overall chromatographic data of its chemical constituents. Next, high-performance liquid chromatography-mass spectrometry was applied to identify its chemical constituents. Then, the characteristic constituents were simultaneously quantified by high-performance liquid chromatography. In addition, the chemical constituents that were absorbed into rat plasma were identified by high-performance liquid chromatography-mass spectrometry. As a result, a total of 48 chemical constituents in the medicine pair were detected and identified in vitro. Meanwhile, the content of seven representative constituents, including dihydromyricetin, glycitin, genistin, tectoridin, glycitein, genistein, and tectorigenin were simultaneously determined. Furthermore, a total of 19 chemical constituents were detected in rat plasma after oral administration. In short, the chemical constituents of the medicine pair were initially investigated in this study, which will lay the foundation for the discovery of its pharmacodynamic substances in further works.  相似文献   
38.
等吸收紫外光度法同时测定槐米中的芦丁和槲皮素   总被引:15,自引:0,他引:15  
以等吸收紫外光度法同时测定了槐米提取物中的芦丁和槲皮素。实验表明 ,槲皮素在波长 2 4 7nm和2 6 6 nm处有相同的吸收 ,芦丁在波长 340 nm和 370 nm处有相同的吸收。芦丁和槲皮素在 4 .32—4 8.6 5 μg/m L的浓度范围内符合比耳定律。本法测定槐米提取物中的芦丁和槲皮素 ,含量分别达到80 .6 0 %和 9.4 9% ;相对标准偏差为 1.6 1%和 1.5 3%。  相似文献   
39.
闹羊花与野菊花红外光谱的分析与鉴定   总被引:1,自引:0,他引:1  
采用傅里叶变换红外光谱对杜鹃花科植物闹羊花与菊科植物野菊花两种花类中药材的主成分进行表征,其中闹羊花出现在1 648和1 543cm-1出现明显的酰胺Ⅰ带和酰胺Ⅱ带吸收峰,证明其中含有蛋白质,可能与其具有的免疫作用相关;野菊花出现在1 734和1 515cm-1等CO伸缩振动吸收峰,证明其中含有挥发油等酯类成分。由于二者的红外光谱具有较高的相似性且难以区分,通过二级鉴别比较闹羊花与野菊花的二阶导数红外光谱可看出,在1 656和1 515cm-1附近的吸收峰,表明二者均含有黄酮类成分;野菊花的二阶导数谱图中出现在1 163,1 077,1 026,986和869cm-1的吸收峰与菊糖的特征吸收峰一致,因此可以看出野菊花中含有菊糖。选取不同波数范围的闹羊花与野菊花的二维相关红外光谱进行对比,发现在1 700~1 400cm-1黄酮类成分区域闹羊花有3个明显的自动峰,野菊花有10个明显的自动峰;在1 250~900cm-1糖苷类成分区域闹羊花有10个明显的自动峰,野菊花有9个明显的自动峰。红外光谱的"三级鉴定法"为中药材的鉴别提供更快速、准确、方便的手段。  相似文献   
40.
区带毛细管电泳法分离测定洋金花中莨菪烷类生物碱   总被引:4,自引:0,他引:4  
采用区带毛细管电泳法分离测定洋金花中3种莨菪烷类生物碱—阿托品、山莨菪碱和东莨菪碱。以57 cm×50μm熔融石英毛细管为分离通道,工作电压25 kV,温度25℃,200 mmol/L Tris-H3PO4(pH=8.3)为背景电解质。经优化分离条件,3种莨菪烷类生物碱达到基线分离,此方法快速、简便,可作为中药材洋金花中有效成分分离的方法和质量控制方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号