首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   2篇
  国内免费   11篇
化学   67篇
晶体学   4篇
力学   6篇
数学   6篇
物理学   280篇
综合类   21篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   13篇
  2013年   15篇
  2012年   53篇
  2011年   53篇
  2010年   33篇
  2009年   35篇
  2008年   31篇
  2007年   16篇
  2006年   27篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   14篇
  2001年   1篇
  2000年   8篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有384条查询结果,搜索用时 46 毫秒
81.
The relation between the magnetoimpedance and the magnetic properties of a wide set of soft magnetic microwires from several sources has been studied. Magnetic properties were obtained by vibrating sample magnetometry and ferromagnetic resonance spectroscopy. The magnetoimpedance voltage sensitivity of each sample, the criterion of interest for high sensitivity magnetometer design, was then evaluated at several frequencies and drive currents. It appears that all samples possess roughly similar properties, regardless of their fabrication process or chemical composition. The voltage sensitivity of the samples obtained from experimental measurement is compared with a simple model of sensitivity. The general trends predicted by the model provide useful insights for materials optimization. Averaged sensitivity over the sample set is around 10 kV/T/cm at 10 MHz. The critical importance for sensitive magnetometry of the maximum excitation current permissible in each wire is also highlighted.  相似文献   
82.
In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.  相似文献   
83.
A continuum thermodynamics formulation for micromagnetics coupled with mechanics is devised to model the evolution of magnetic domain and martensite twin structures in ferromagnetic shape memory alloys. The theory falls into the class of phase-field or diffuse-interface modeling approaches. In addition to the standard mechanical and magnetic balance laws, two sets of micro-forces and their associated balance laws are postulated; one set for the magnetization order parameter and one set for the martensite order parameter. Next, the second law of thermodynamics is analyzed to identify the appropriate material constitutive relationships. The proposed formulation does not constrain the magnitude of the magnetization to be constant, allowing for spontaneous magnetization changes associated with strain and temperature. The equations governing the evolution of the magnetization are shown to reduce to the commonly accepted Landau-Lifshitz-Gilbert equations for the case where the magnetization magnitude is constant. Furthermore, the analysis demonstrates that under certain limiting conditions, the equations governing the evolution of the martensite-free strain are shown to be equivalent to a hyperelastic strain gradient theory. Finally, numerical solutions are presented to investigate the fundamental interactions between the magnetic domain wall and the martensite twin boundary in ferromagnetic shape memory alloys. These calculations determine under what conditions the magnetic domain wall and the martensite twin boundary can be dissociated, resulting in a limit to the actuating strength of the material.  相似文献   
84.
磁性聚苯胺纳米微球的合成与表征   总被引:1,自引:0,他引:1  
报道了具有核壳结构的Fe3O4-聚苯胺磁性纳米微球的合成方法和表征结果.微球同时具有导电性和磁性能.在优化的实验条件下,可得到饱和磁化强度Ms为55.4 emu/g,矫顽力Hc为62 Oe的磁性微球.微球的导电性随着微球中Fe含量的增加而下降.微球的磁性能则随着Fe含量的增加而增大.Fe3O4磁流体的粒径和磁性聚苯胺微球的粒径均在纳米量级.纳米Fe3O4粒子能够提高复合物的热性能.实验表明,磁流体和聚苯胺之间可能存在着一定的相互作用,但这种相互作用较为复杂,难于研究  相似文献   
85.
在 Fe_2O_3-CaO-SiO_2-B_2O_3-P_2O_5五元系统中制备出能用于温热治疗肿瘤的铁磁体微晶玻璃热种子材料。在1000℃热处理得到的微晶玻璃磁铁矿晶粒尺寸约为70nm,最大比饱和磁化强度为394.6A·m~2/kg。并证实形成玻璃的氧化铁最大含量为37.7%,必须在还原气氛下进行热处理才能得到以磁铁矿为主要晶相的铁磁体微晶玻璃。  相似文献   
86.
应用线性自旋波的理论导出铁磁-反铁磁双层系统的Heisenberg模型哈密顿量,采用矩阵格林函数运动方程技术得到自旋波的色散关系,利用数值计算的方法得到铁磁-反铁磁双层的低温内能。  相似文献   
87.
本文建立了铁磁条和硬势垒共同调制下的石墨烯纳米结构模型,计算了铁磁条产生的磁场的大小和铁磁条的宽度对石墨烯中谷依赖的电子输运性质的影响,重点研究了该石墨烯纳米结构中电子的电导和谷极化特征. 数值计算结果表明,该纳米结构中可实现显著的谷极化效应,且磁场的大小和铁磁条的宽度均会对其中的电子电导和谷极化产生较大的影响. 因此,我们可以通过控制铁磁条的宽度和其产生的磁场的大小来获得实际需要的谷极化强度. 这项研究有助于理解和设计谷电子学设备.  相似文献   
88.
Many technical and logistical questions must be addressed when planning the installation of an NMR imaging system. These considerations become particularly significant when the facility is being established within an existing medical center complex. This paper presents a report on the practical aspects and experience obtained in siting a 6-coil 0.15 T resistive magnet system. The topics discussed include: floor loading; ferromagnetic environment; the effect of iron on the magnet field strength and homogeneity characteristics; shimming procedures; temperature stability requirements; rf shielding; and effects of the magnetic field on common medical instrumentation and magnetic media. It was found that the field shift as a function of the distance of a steel mass from the center of the magnet exhibited an (1/r)5.2±0.5 to (1/r)4.2±0.3 dependence for axial and radial positions respectively which, as expected, is somewhat weaker than the (1/r)6 dependence expected by point dipole approximations. Field distortions caused by the presence of ferromagnetic material in radial positions may be essentially fully compensated with first order transverse shim coils (most conveniently, the x and y imaging gradient coils could be used). Axially distributed material requires, in addition to first order z-gradient correction, higher order axial shim compensation. The temperature stability of the magnet system over the scan period must be better than 0.2°C to insure that temperature-induced field fluctuations are less than the intrinsic static inhomogeneity: and, ideally, below 0.01°C to reduce these fluctuations to less than those caused by power supply instability.  相似文献   
89.
This paper reviews various origins of ferromagnetic response that has been detected in diluted magnetic semiconductors (DMS). Particular attention is paid to those ferromagnetic DMS in which no precipitation of other crystallographic phases has been observed. It is argued that these materials can be divided into three categories. The first consists of (Ga,Mn)As and related compounds. In these solid solutions the theory built on p–d Zener's model of hole-mediated ferromagnetism and the Kohn–Luttinger kp theory of semiconductors describes quantitatively thermodynamic, micromagnetic, optical, and transport properties. Moreover, the understanding of these materials has provided a basis for the development of novel methods enabling magnetisation manipulation and switching. To the second group belong compounds, in which a competition between long-range ferromagnetic and short-range antiferromagnetic interactions and/or the proximity of the localisation boundary lead to an electronic nano-scale phase separation that results in characteristics similar to colossal magnetoresistance oxides. Finally, in a number of compounds a chemical nano-scale phase separation into the regions with small and large concentrations of the magnetic constituent is present. It has recently been suggested that this spinodal decomposition can be controlled by the charge state of relevant magnetic impurities. This constitutes a new perspective method for 3D self-organised growth of coherent magnetic nanocrystals embedded by the semiconductor matrix.  相似文献   
90.
A rather complete work on transition-metal (TM)-doped TiO2 thin films has been done and room ferromagnetism (FM) is found in the whole series of Sc/V/Cr/Mn/Fe/Co/Ni-doped TiO2 films. Not only is it remarkable that for the first time, FM at high temperature was achieved in TM-doped TiO2, but also a very big magnetic moment of 4.2μB/atom could be obtained, and direct evidences of real ferromagnets with big domains were shown as well. A similar chemical trend was achieved in TM-doped In2O3 films, however, the observed magnetic moment is rather modest, with the maximal value is of only 0.7μB/atom for Ni-doped In2O3 films. As regards TM-doped SnO2 films, observed magnetic moments could be very large, with the maximum saturation of 6μB per impurity atom for Cr-doped SnO2 thin films, but it could be influenced very much depending on substrate types. On the other hand, results on TM-doped ZnO films interestingly have revealed that in these systems, the magnetism more likely resulted from defects and/or oxygen vacancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号