首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6190篇
  免费   426篇
  国内免费   705篇
化学   5436篇
晶体学   45篇
力学   8篇
综合类   16篇
数学   8篇
物理学   1418篇
综合类   390篇
  2024年   43篇
  2023年   195篇
  2022年   355篇
  2021年   289篇
  2020年   370篇
  2019年   323篇
  2018年   291篇
  2017年   280篇
  2016年   270篇
  2015年   216篇
  2014年   318篇
  2013年   414篇
  2012年   409篇
  2011年   499篇
  2010年   359篇
  2009年   472篇
  2008年   435篇
  2007年   436篇
  2006年   313篇
  2005年   292篇
  2004年   204篇
  2003年   148篇
  2002年   139篇
  2001年   81篇
  2000年   82篇
  1999年   33篇
  1998年   21篇
  1997年   11篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有7321条查询结果,搜索用时 16 毫秒
71.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
72.
Low-lying equilibrium geometric structures of Phosphorus-doped aluminum cluster Al n P (n = 2–12) clusters obtained by an all-electron linear combination of atomic orbital approach, within spin-polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three-parameter hybrid generalized gradient approximation (GGA) due to Becke-Lee-Yang-Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static polarizabilities are calculated for the ground-state structures within the GGA. It is observed that symmetric structures with the P atom occupying a peripheral position are lowest-energy geometries of Al n P (n = 2, 4–11), while the P impurities of Al3P and Al12P prefer to occupy internal sites in the aluminum clusters. Generalized gradient approximation extends bond lengths as compared to the LSDA lengths. The odd-even oscillations in the dissociation energy, the second differences in energy, the HOMO–LUMO gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within both GGA and LSDA. The stability analysis based on the energies clearly shows the clusters with an even number of valence electrons are more stable than clusters with odd number of valence electrons.  相似文献   
73.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   
74.
Hydration of the copper(II) bis‐complexes with glycine, serine, lysine, and aspartic acid was studied by DFT and MD simulation methods. The distances between copper(II) and water molecules in the 1st and 2nd coordination shells, the average number of water molecules and their mean residence times in the hydration shells were calculated. Good agreement was observed between the values obtained and those found by DFT and NMR relaxation methods. Influence of the functional groups of the ligands and the cistrans isomerism of the complexes on the structural and dynamical parameters of the hydration shells was displayed and explained. Analysis of the MD trajectories reveals the competition for a copper(II) axial position between water molecules or water molecules and the functional chain groups of the ligands and confirms the suggestion on the pentacoordination of copper(II) in such complexes. MD simulations show that only one axial position of Cu(II) is basically occupied at each time step while in average the coordination number more than 5 is observed. © 2017 Wiley Periodicals, Inc.  相似文献   
75.
76.
77.
A novel SOD-like macrocycle “H2DPD” and its trivalent chromium, iron and divalent manganese complexes have been isolated and characterized using the conventional tools. The macrocycle was prepared by 2:2 condensation of P-phenylenediamine with 5,5-dimethyl1,3-cyclohexanedione. IR and electronic spectral data suggested that H2DPD coordinates to the metal ion as N4 tetradentate donor with two Cl occupying the remaining two sites of the distorted octahedron. XRD spectrum of Cr3+ complex indicated that the complex crystallizes in a face-centered monoclinic structure with lattice parameters: a = 10.9380 Å; b = 12.4870 Å; c = 12.4600 Å, α = γ = 90° and β = 111.430 with space group P 1 21/c 1 (14). The energy gap (EHOMO-ELUMO), molecular electrostatic potential map (EPM) of title compounds, bond length, bond angle, as well as global and local reactivity were estimated using DFT method. The Eg values obtained from electronic spectra of Cr3+, Mn2+ and Fe3+ complexes were found to be 1.284, 1.220 and 1.138 eV, respectively which are in accordance with those evaluated by DFT revealing semiconductor nature. Also, the thermal degradation of all title compounds was carried out and the kinetic parameters were evaluated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the compounds have screened for antibacterial as well as superoxide mimic activities. Cr3+ complex exhibited the most significant potent activity against all bacterial strains. With respect to SOD-like activity, the macrocycle showed the most remarkable SOD-like activity comparable to the standard drug, ascorbic acid.  相似文献   
78.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   
79.
80.
The interaction of four moderately reactive molecules (MRMs), benzene (BZ), water, ammonia and silicon dioxide, with three aromatic organic superhalogens (OSHs) has been investigated at the density functional theory (DFT) level. The strength of the interaction is analysed from the distortions in the structures of both the MRMs and OSHs after complexation and the calculated binding energy (BE) values between the two interacting moieties. The interaction becomes stronger as we move from BZ to H2O to NH3 and strongest for SiO2 molecule. Contributions from different terms in total interaction energy have been examined by energy decomposition analysis (EDA). The charge flow values between MRMs and OSHs, and Mulliken spin density localised on the moderately reactive molecules have been evaluated to ensure whether the interaction is ionic or not. Atoms in Molecules (AIM) analysis has been performed to characterise the bonds formed between the two. Overall, our study gives a comprehensive account of the interaction between the moderately reactive molecules and three theoretically designed aromatic organic superhalogens, which will further motivate researchers in the field of superhalogen chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号