首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   14篇
  国内免费   102篇
化学   616篇
力学   8篇
综合类   3篇
数学   3篇
物理学   110篇
综合类   76篇
  2024年   4篇
  2023年   36篇
  2022年   13篇
  2021年   17篇
  2020年   20篇
  2019年   15篇
  2018年   14篇
  2017年   29篇
  2016年   17篇
  2015年   20篇
  2014年   43篇
  2013年   49篇
  2012年   28篇
  2011年   46篇
  2010年   45篇
  2009年   39篇
  2008年   44篇
  2007年   45篇
  2006年   39篇
  2005年   30篇
  2004年   40篇
  2003年   25篇
  2002年   37篇
  2001年   24篇
  2000年   18篇
  1999年   9篇
  1998年   15篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1970年   1篇
排序方式: 共有816条查询结果,搜索用时 46 毫秒
51.
使用了一种新型的有机电解液(三乙基甲基四氟硼酸铵/(丙烯碳酸酯+乙腈): MeEt3NBF4/(AN+PC))和两种传统有机电解液(四乙基四氟硼酸铵/丙烯碳酸酯(Et4NBF4/AN)和四乙基四氟硼酸/乙腈(Et4NBF4/PC)), 制作成活性炭(AC)基软包装超级电容器. 在不同电压窗口下对新型有机电解液的循环伏安和电化学阻抗谱进行了表征, 并在0-3 V的电压窗口下, 通过循环伏安、电化学阻抗谱、恒流充放电、漏电流、自放电、循环寿命和库仑效率, 对以上三种电解液进行了综合的比较. 结果表明, 新型有机电解液综合了AN和PC各自的优点, 性能优异.  相似文献   
52.
A novel metal-free oxidative arylphosphination of activated N-substituted-N-arylacrylamide derivatives by phosphorylation and C–H functionalization cascade process has been developed. This methodology provides an efficient way to construct a variety of phosphorus-containing oxindole moieties.  相似文献   
53.
rac-BINAP-PdCl2 catalytic system catalyzed Heck reaction of 3-formylquinolin-2-yl chlorides with methyl acrylate in DMA is described to the synthesis of methyl 3-(3-formyl-quinolin-2-yl)-acrylates, in good to excellent yields. The reaction could be also extended with other activated alkenes to afford Heck products. Fused-benzene ring in heterocyclic and carbocyclic moieties was found to enhance the yields.  相似文献   
54.
Activated sludge was tested for its ability to remove Cu2+ from aqueous solution. The effects of various experimental parameters (initial pH, initial Cu2+ concentration, adsorbent dosage, and temperature) on Cu2+ adsorption were evaluated. The Langmuir isotherm model well described the adsorption of Cu2+ onto activated sludge. The pseudo-second-order kinetic equation was appropriate for describing the kinetic performance of the sorption. Furthermore, Webber–Morris models indicated that the sorption of Cu2+ was generally found to involve with the intraparticle diffusion process. Parameters of adsorption thermodynamic suggested that the interaction of Cu2+ adsorbed by sludge was spontaneous and exothermic. Activated sludge was characterized by Fourier transform infrared spectroscopy analysis and results showed that active groups such as –OH, –COOH, –NH2 were involved in Cu2+ adsorption. Zeta potential analysis demonstrated inner-sphere adsorption for Cu2+ adsorption on sludge.  相似文献   
55.
This study highlights the importance of a cheap bio waste; Pine Nut Shell (PNS), from which a carbon is synthesized that can efficiently remove toxic phthalates from an aqueous system. PNS derived carbon shows high affinity toward phthalates in descending order along with adsorption capacity i.e., dibutyl phthalate (DBP) 5.65 mg/g > diallyl phthalate (DAP) 3.64 mg/g > diethyl phthalate (DEP) and 2.87 mg/g > dimethyl phthalate (DMP) 2.48 mg/g. Different characterization techniques such as FTIR, elemental analysis, point of zero electric charge (PZC), SEM, EDX and BET were employed to investigate the binding sites and surface area of the adsorbent. Adsorption experiments were performed both in batch and column modes. Equilibrium studies showed that the Langmuir isotherm fits best to experimental data. Kinetically, adsorption phenomena obeyed pseudo second order. Furthermore, thermodynamic results expressed the exothermic nature of adsorption on the basis of negative value of enthalpy change. Column sorption method was also adapted to check the feasibility of the adsorption process through the investigation of flow rate, breakthrough curve and pre-concentration factor which is found to be 13 for DMP and DEP and 16 for DAP and DBP. Methanol was found to be best solvent for the recovery of phthalates. Application in real water samples also showed good efficiency of PNS derived carbon for the removal of phthalates.  相似文献   
56.
Tungsten oxide (WO3) nanoparticles were prepared hydrothermally by basil leaves extract, and Activated Carbon (AC) was prepared by the carbonization of date pits. Moreover, 1, 2 and 3% of AC doped WO3 nanoparticles have been fabricated under hydrothermal conditions. The obtained samples have been characterized by using different techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis (TG-DTGA), fourier transform infrared (FT-IR), BET surface area, and Ultra-Violet spectroscopy (UV–Vis). It was observed that band-gap energy of the fabricated materials decreases by increasing AC amount. Similarly, BET surface area and porosity results showed increasing the content of AC, surface area, pore size and pore volume were decreased. The functional groups, determined by FT-IR, played a significant role in the photocatalytic performance. The photocatalytic performance of fabricated samples was used for the degradation of methylene blue (MB) at neutral pH under visible light radiations, and it is observed that WO3/3%AC photocatalyst showed the highest degradation of MB. Both, capped phytochemicals of basil extract and the nanocomposites, were improved the photocatalytic performance, about 94% photodegradation was observed within 25 min under the reaction conditions. The photocatalyst was stable and about 85% and 81% photodegradation of MB were found under the two times of reusability tests.  相似文献   
57.
Carbon foams have gained significant attention due to their tuneable properties that enable a wide range of applications including catalysis, energy storage and wastewater treatment. Novel synthesis pathways enable novel applications via yielding complex, hierarchical material structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane elastomer templates using different synthesis pathways, including a novel one-step method. Uniquely, the produced foams exhibited complex structure and contained carbon microspheres. The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution followed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD) and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of turbostratic structure. Moreover, the activation process enhanced the surface of the carbon foam, making it more hydrophilic via altering pore size distribution and introducing oxygen functional groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced ACFs have potential applications as adsorbents, catalyst support and electrode material in energy storage systems.  相似文献   
58.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   
59.
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy () and entropy () have been calculated. Finally, information related to variations of differential adsorption enthalpy () and entropy () with the surface coverage fraction (θ) was obtained by using the corresponding Clausius-Clapeyron equations.  相似文献   
60.
P-nitrophenol (PNP), a hazardous phenolic material, should be eliminated from water in order to prevent damage to the marine ecosystem, animals as well as humans. Although adsorption seems to become the most widely used strategy, an effective and strong-capacity adsorbent to minimize PNP under the approved concentration is essential to discovering. In this study, a class of porous adsorbents composite was developed for the PNP removal from water. AC-NH2-MIL-101(Cr) has chosen to boost the removal of PNP from water owing to extremely porous and stable in water. The fabricated composite has 2049 m2.g−1 large surface area and 0.93 cm3.g−1 pore volume. The adsorption kinetics and isotherms were investigated. AC-NH2-MIL-101(Cr) was found to exhibit an adsorption capacity of ~ 18.3 mg g−1. The mechanism for this strong adsorption performance was suggested and related to affinity NO2 groups of PNP and the unsaturated chromium site of AC-NH2-MIL-101(Cr), the coulombic interaction via the hydrogen bond between the PNP and AC-NH2-MIL-101(Cr) and π-π stacking interaction. AC-NH2-MIL-101(Cr) composite also displayed exceptional stability and reusability after a successive PNP removal processes. This study provides new insight into developing and synthesizing extremely effective nanoporous material for organic contaminants disinfection from waste water based on MOFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号