首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   26篇
  国内免费   120篇
化学   180篇
晶体学   4篇
力学   1篇
综合类   4篇
数学   1篇
物理学   38篇
综合类   260篇
  2024年   9篇
  2023年   32篇
  2022年   19篇
  2021年   34篇
  2020年   22篇
  2019年   20篇
  2018年   14篇
  2017年   13篇
  2016年   8篇
  2015年   12篇
  2014年   29篇
  2013年   20篇
  2012年   19篇
  2011年   16篇
  2010年   10篇
  2009年   16篇
  2008年   11篇
  2007年   12篇
  2006年   16篇
  2005年   24篇
  2004年   12篇
  2003年   16篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   17篇
  1997年   9篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有488条查询结果,搜索用时 224 毫秒
21.
金属锂因具有极高的理论比容量(3860 mAh/g)和最低的电化学势(相对于标准氢电极为-3.04 V),被认为是下一代高比能锂离子电池的首选负极材料。然而,金属锂负极在电池循环过程中发生的刺状枝晶生长和体积变化等问题严重阻碍了其产业化应用进程。近年来研究表明,通过在金属锂中引入具有三维(3D)结构的宿主骨架,不但能有效抑制锂枝晶的生长,而且可以缓解金属锂负极的体积变化,从而提高金属锂电池的循环性能与安全性。因此,设计3D骨架/金属锂复合负极被认为是一种能有效解决金属锂问题的新兴策略。本文综述了热熔灌输法制备3D骨架/金属锂复合负极的研究进展。首先讨论了当前基于3D骨架的预存金属锂技术,然后着重分析了热熔灌输策略中3D骨架锂润湿性的影响因素,以及不同3D骨架修饰特征和改性方法。最后对3D骨架/金属锂复合负极和热熔灌输策略现存问题进行了总结并提出未来的发展方向。  相似文献   
22.
为克服锂/硫电池的正极材料单质硫的导电性差、放电产物的部分溶解导致电池性能下降等问题,设计并制备了一种新型正极材料多硫化碳炔。通过核磁共振、拉曼光谱、X-射线及SEM等手段对其进行了研究,并得到其形态及结构信息,证明材料具有“主链导电、侧链储能”的结构。通过充放电性能测试及循环伏安测试对其电化学性能进行了研究,结果表明该材料具有较高的充放电效率与良好的循环性能,0.4mA/cm2的放电条件下60次循环后比容量可以达到400mAh/g,充放电效率接近100%。  相似文献   
23.
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10Ω·cm2,对称电池能够在0.1mA·cm-2的电流密度下实现长达1000h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2(NCM523)的准固态电池在室温下能够稳定循环100次以上。  相似文献   
24.
金属锂具有电位低、比容量高等突出优点,是极具吸引力的下一代高能量密度电池的负极材料,然而存在枝晶、死锂、副反应严重、库伦效率低、循环稳定性差等问题,限制了其实际应用。金属锂负极的成核是电化学沉积过程中的重要步骤,锂在集流体或导电载体上的均匀成核和稳定生长对于抑制枝晶死锂、提高充放电效率和循环性能具有关键作用。本文从成核机制与载体效应的角度概述了锂金属负极的研究进展,介绍了锂成核驱动力、异相成核模型、空间电荷模型等内容,分析了锂核尺寸及分布与过电位和电流密度的关系,并通过三维载体分散电流密度、异相晶核/电场诱导成核、晶格匹配等方面的研究实例讨论了载体修饰对锂负极的性能提升。  相似文献   
25.
鉴于传统神经网络和支持向量机机理复杂、计算量大的缺陷,很难实时跟踪磷酸铁锂电池组复杂快速的内部反应,影响电池荷电状态的估算精度,提出应用一种简单、有效的极限学习机对一额定容量为100Ah、额定电压为72V的纯电动汽车磷酸铁锂电池组建模,并分别与BP神经网络、RBF神经网络、支持向量机进行对比。随后,以学习时间和泛化性能为优化目标,应用粒子群方法寻找最佳隐层节点个数。结果表明,基于极限学习机的磷酸铁锂电池组模型的学习时间、泛化性能优于BP神经网络、RBF神经网络、支持向量机;隐层节点优化后,模型的学习时间和泛化性能达到最优。  相似文献   
26.
涂碳铝箔对磷酸铁锂电池性能影响研究   总被引:1,自引:0,他引:1  
本文研究了使用涂碳铝箔作为正极集流体磷酸铁锂电池的性能。研究对比了使用普通铝箔和涂层铝箔的10 Ah软包磷酸铁锂电池的主要性能。研究表明:使用涂层铝箔不但可以提高磷酸铁锂材料的粘结性,而且使用导电涂层可以有效降低正极材料和集流体的接触内阻,从而减小电池内阻,提高电池倍率性能。与使用普通铝箔作为集流体相比,通过使用涂碳铝箔可以使得电池的内阻降低65%左右,但是,磷酸铁锂正极材料的克容量却偏低约5~10 mAh·g-1,首次效率也偏低4%左右;在快速放电15C倍率下,使用涂碳铝箔的电芯比使用普通铝箔容量提高约15%左右,10C放电倍率下,平台增加0.3~0.4 V;使用涂碳铝箔电芯的常温自放电率较高,但容量恢复率也较高;550周循环下,使用涂碳铝箔可以使得电池的循环性能提高约1%。而在电池低温性能方面,使用涂碳铝箔对低温性能并无改善。  相似文献   
27.
固态电池发展至今,许多比能量高、贮存性能好的新型电池产品不断涌向市场,而目前广泛用于正极材料的大多数物质是层状化合物[1],如聚乙炔,聚苯胺等化合物,它们贮存能量的方式主要是通过插入化学反应来实现,本工作将合成一种高分子材料——2.5-二巯基-1,3...  相似文献   
28.
近年来,人们对二次锂电池的正极进行了不少研究。许多过渡金属氧化物或硫化物,如V_6O(13),Li_(1+x)V_3O_8,TiS_2,MoS_2等被认为是较好的正极材料。Pistoia等研究了Li_(1+x)V_3O_8钒青铜的电化学性能得出,当Li浓度高时,由于电子定域作用使电荷屏蔽效应  相似文献   
29.
研究了一种新型有机醌类化合物1,4,5,8-四羟基-9,10-蒽醌(THAQ)及其氧化产物(O-THAQ)的电化学性能.循环伏安和充放电结果显示,在放电时材料中的羰基和羟基均被还原为烯醇锂盐(襒C—O-Li+)结构,其中羰基还原为烯醇锂盐结构的过程可逆.O-THAQ首次放电容量和循环性能都有显著提高,氧化产物的首次放电容量为250 mAh.g-1,20次循环容量为100 mAh.g-1.讨论了THAQ氧化前后性能差异的原因.  相似文献   
30.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号