首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1523篇
  免费   28篇
  国内免费   58篇
化学   81篇
晶体学   5篇
力学   51篇
综合类   4篇
数学   26篇
物理学   32篇
综合类   1410篇
  2024年   11篇
  2023年   43篇
  2022年   65篇
  2021年   69篇
  2020年   58篇
  2019年   51篇
  2018年   27篇
  2017年   48篇
  2016年   78篇
  2015年   95篇
  2014年   147篇
  2013年   95篇
  2012年   72篇
  2011年   85篇
  2010年   71篇
  2009年   72篇
  2008年   61篇
  2007年   49篇
  2006年   25篇
  2005年   45篇
  2004年   39篇
  2003年   31篇
  2002年   34篇
  2001年   29篇
  2000年   34篇
  1999年   22篇
  1998年   14篇
  1997年   15篇
  1996年   15篇
  1995年   15篇
  1994年   17篇
  1993年   16篇
  1992年   17篇
  1991年   11篇
  1990年   11篇
  1989年   13篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
排序方式: 共有1609条查询结果,搜索用时 546 毫秒
41.
ABR酸解及恢复过程中的特征研究   总被引:1,自引:0,他引:1  
研究了厌氧折流板反应器(ABR)完全酸化期同各参数的变化情况.在酸化期间各隔室pH值均低于6.0,且均在5.0~6.0之同变化;出水与进水的COD质量浓度接近,COD去除率平均在10%;各隔室的挥发性脂肪酸(VFA)均大于1 g/L,该状况持续15 d后,通过降低COD负荷来恢复ABR,经过109 d的运行,COD去除率稳定在90%以上,ABR恢复正常.  相似文献   
42.
针对吉木萨尔凹陷芦草沟组页岩油储层压裂垂向改造程度低的问题,基于真三轴水力压裂模拟试验研究CO2与胍胶复合压裂相比于常规水基和超临界CO2压裂缝高扩展的优势.创新性建立一套针对天然页岩的水平井多段压裂模拟试验方法,并通过试样剖分、CT扫描和声发射监测等方法综合确定多段压裂裂缝形态和破裂机制.结果表明:低黏度滑溜水和超临...  相似文献   
43.
超临界二氧化碳压裂液对温度、压力较为敏感,准确地预测注入过程中的井筒温压及相态直接影响着最终的压裂效果。因此,建立了考虑轴向导热、焦汤效应、膨胀(压缩)做功、摩擦生热热量分配的超临界二氧化碳压裂井筒瞬态温压模型,模拟分析了注入温度、施工排量、降阻效果、油管尺寸对井筒温压及相态的影响。研究结果表明,井筒温度降低导致的二氧化碳密度增加、流速降低,使得井口压力随井底温度同步降低。注入温度越高、施工排量越小、降阻率越高、油管尺寸越大,井底温度越高、井口压力越低。其中,井口温度增加10℃,井底温度增加约为7℃;降阻率提高20%,井口压力降低约7MPa。提高注入温度及流动通道的横截面积、降排量的同时使用稠化剂(降阻剂)可促使二氧化碳在井底达到超临界态。研究成果对超临界二氧化碳压裂的优化设计及现场应用具有较强的指导意义。  相似文献   
44.
裂隙岩体应力-渗流耦合机制是油气开采、地应力测量与地质灾害防控等岩土工程活动的理论基础。基于近场动力学非局部作用思想提出了物质点双重覆盖理论模型,通过将近场动力学在模拟固体材料变形损伤与地下水渗流两方面的优势相结合,采用“混合”时间积分方案,构建了流体压力驱动条件下裂隙岩体应力-渗流耦合的常规态型近场动力学模拟方法,并将其应用于空心圆柱体注水试验模拟,揭示了水力裂隙起裂、扩展和贯通的作用机制,通过与室内试验及传统数值方法计算结果对比验证了模拟方法的有效性。模拟结果显示,空心圆柱体注水试验过程中岩体的变形和破坏完全是由水力驱动的,水力裂隙的产生是随机的,不需要指定裂隙扩展路径,并且水力压裂过程中致使试件破裂的能量存在积蓄-释放过程,应用近场动力学方法可以较好地捕捉该现象。  相似文献   
45.
为解决钙钛矿太阳能电池(perovskite solar cells,PSCs)中采用贵金属作为对电极(counter electrode,CE)而导致的成本高昂问题,对碳纳米管(CNTs)进行磺酸化处理,并将磺酸化CNTs(s-CNTs)作为对电极材料应用到PSCs中.利用稳态荧光(PL)、电化学阻抗(EI)等方法对...  相似文献   
46.
以建立高效的动态分析方法为出发点,以边单元作为求解点,改进传统的格林元方法,减少未知数和求解矩阵维度;并提出基于改进格林元的加密网格加密方法,保证考虑复杂裂缝网络的压裂水平井动态模拟的早期精度.退化模型与半解析解、数值模拟结果进行对比,验证本文基于加密网格的改进格林元方法的准确性和动态分析的高效性.最后进行动态响应的敏感性分析,结果表明:①格林元方法是一种高精度的动态模拟方法,将求解节点设置在网格的边上可以提高压裂水平井动态模拟的速度;②改进格林元方法的加密基于叠加原理,不需要通过插值近似,其求解精度高.在相同加密网格条件下,基于本文改进格林元方法的加密效果比有限差分加密效果更佳;③复杂裂缝导流能力、改造区渗透率提高倍数、改造区大小等参数对压裂水平井动态特征影响较大,在动态分析和参数反演时,应着重考虑这些因素的影响.  相似文献   
47.
静电纺丝法制备硫酸化的二氧化锆/二氧化硅复合纤维   总被引:1,自引:0,他引:1  
将电纺丝技术与溶胶-凝胶技术相结合, 制备了SZ粒子分布于SiO2纤维外壁的硫酸化的二氧化锆/二氧化硅复合纤维. 与常见的SZ复合催化剂相比, 采用SiO2纤维负载SZ不仅可以解决粉体材料带来的难以与反应体系分离等弊病, 同时功能粒子SZ分布与纤维外壁的结构也提高了功能粒子的利用率.  相似文献   
48.
以不同浓度的H2SO4对膨润土进行改性,得到酸化膨润土催化剂x%H2SO4-BN(x=20,25,30,35,40),通过XRD,BET,FT-IR,Py-IR和NH3-TPD对膨润土的结构和性质进行表征,证明膨润土经酸化后,骨架结构基本没有变化,但是其比表面和孔容有很大的提高,且弱酸位增多.将其用于催化乙醇(EtOH)和叔丁醇(TBA)合成乙基叔丁基醚(ETBE)的醚化反应.结果表明,30%H2SO4-BN催化活性最好,最佳实验条件:催化剂用量为3.5%(催化剂与叔丁醇的质量百分比),反应温度130℃,原料摩尔比(EtOH:TBA)为2∶1.  相似文献   
49.
Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.  相似文献   
50.
基于爆炸压裂裂缝分布规律,提出爆炸压裂缝网双重介质复合流动产能模型,应用Laplace变换Stehfest数值反演,得到了定压条件下封闭外边界低渗透油藏爆炸压裂生产井产能表达式。在模型正确性验证的基础上结合某低渗透油藏储层特征参数研究了爆炸压裂改造区域参数对封闭边界油藏产量的影响,同时对爆炸压裂改造改造体积优化设计进行了研究。研究结果表明,爆炸压裂改造区域半径主要影响生产中期产能,改造区域渗透率对生产早期和中期影响比较大,且对于实例油藏爆炸压裂改造比为0.1时效果最好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号