首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2437篇
  免费   344篇
  国内免费   295篇
化学   261篇
力学   61篇
综合类   22篇
数学   53篇
物理学   872篇
综合类   1807篇
  2024年   32篇
  2023年   90篇
  2022年   98篇
  2021年   120篇
  2020年   57篇
  2019年   104篇
  2018年   37篇
  2017年   69篇
  2016年   70篇
  2015年   82篇
  2014年   184篇
  2013年   156篇
  2012年   160篇
  2011年   183篇
  2010年   168篇
  2009年   193篇
  2008年   172篇
  2007年   182篇
  2006年   165篇
  2005年   104篇
  2004年   115篇
  2003年   87篇
  2002年   82篇
  2001年   60篇
  2000年   41篇
  1999年   42篇
  1998年   28篇
  1997年   39篇
  1996年   29篇
  1995年   20篇
  1994年   21篇
  1993年   11篇
  1992年   16篇
  1991年   23篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1982年   1篇
排序方式: 共有3076条查询结果,搜索用时 31 毫秒
81.
水孔蛋白(Aquaporins,AQP)是新近发现的一组与水通透有关的细胞膜转运蛋白,广泛存在于动物、植物及微生物细胞膜上.目前已有很多文献介绍水孔蛋白的发现过程和研究进展,但有关知识还没有融入高校的专业教材或及教学中去.本文首先对水孔蛋白作简单介绍,随后提出了将该进展融入生理学,更新其理论的设想.  相似文献   
82.
以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用LockhartMartinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Lee and Lee,Mishima及Qu and Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通  相似文献   
83.
在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.  相似文献   
84.
研究了管径对微通道换热器传热性能的影响,并在百叶窗翅片的基础上开发了两种复合翅片。计算结果表明:在同一迎面风速下,1mm管径的百叶窗翅片Nu数分别比1.5mm和1.8mm管径的大4.8%~10.5%和24.6%~25.8%。JF值增加11%~15%和26%~28%,说明管径为1mm时微通道换热器的综合性能更好。与百叶窗翅片相比,百叶窗-三角翼复合翅片的换热系数减小1.9%~5.4%,但压降降低7.8%~12.7%,表明复合翅片是一种高效低阻翅片。  相似文献   
85.
基于某密闭式大型电力电子设备中电抗器的散热需求,采用了蒸发冷却式的循环风冷散热系统;同时为电抗器设计了一种散热结构,用于提高电抗器的散热性能;并运用计算流体力学软件Ansys/icepak,对该结构进行了仿真优化;分析了循环风量以及该散热结构中的散热器通道宽度,导热片的数量、厚度、排列规律对电抗器散热性能的影响。研究结果表明,在散热器通道宽度为5mm、循环风量为800m3/h,采用不等间距的方式排列5块5mm的铜导热片时,该结构散热条件最佳;电抗器温升可以得到有效的控制,且温度分布均匀,满足系统的使用要求;同时也为该类电抗器的热设计提供了理论依据。  相似文献   
86.
ω-芋螺毒素属于海洋生物活性多肽,由24-31个氨基酸残基组成.特异性作用于电压敏感的钙离子通道(VGCCs),能够直接开发成药物或作为先导化合物进行新药开发.本文应用新型氨基酸残基结构描述符cscales和遗传偏最小二乘算法,对ω-芋螺毒素进行定量构效关系(QSAR)研究,并设计、构建了容量为2244个化合物的N-型和P/Q-型VGCC拮抗剂虚拟组合多肽库,然后分别采用QSAR模型预测和相似性搜索方法对组合多肽库进行了虚拟筛选.研究结果表明,建立的N-型和P/Q-型VGCC拮抗剂QSAR模型均具有较好的预测能力,交叉验证相关系数(CV-r2)均大于0.89.主成分分析和聚类分析结果表明,虚拟组合多肽库中化合物具有较好的结构多样性和差异性.通过虚拟筛选,得到了具有高预测活性的6个N-型和19个P/Q-型钙离子通道拮抗剂,为进一步的合成和活性评价奠定了理论基础.同时,本文建立的多肽QSAR预测模型和虚拟筛选策略,为其它多肽类化合物的定量构效关系研究和虚拟筛选提供了参考.  相似文献   
87.
采用氢化物发生-四通道原子荧光光谱仪同时测定化探样品中砷、锑、铋和汞的含量。试样溶于盐酸-硝酸-水(3+1+4)的混合酸中,分取适量试液在盐酸(1+4)溶液和含硫脲10g·L-1的介质中预还原30min。用纯氩气作载气和屏蔽气,流量依次为300,900mL·min-1。仪器采用间歇流动进样方式,硼氢化钾溶液的质量浓度为15g·L-1。上述4种元素的质量浓度在一定范围内呈线性,检出限(3S/N)为0.031μg·L-1(砷)、0.028μg·L-1(锑)、0.024μg·L-1(铋)和0.004 8μg·L-1(汞)。应用此方法分析了化探样品,并用标准加入法对上述4种元素进行回收试验,测得回收率在95.4%~101%之间。  相似文献   
88.
李仲秋  吴增强  夏兴华 《色谱》2020,38(10):1189-1196
近年来,随着材料科学、微纳加工技术和微纳尺度物质传输理论的发展,纳通道技术得到了越来越多的研究和关注。纳通道包括生物纳通道和人工纳通道,其孔径通常为1~100 nm。在这一尺度下,通道表面与通道内物质之间的作用概率大大增强,使得纳通道表现出许多与宏观体系不同的物质传输特性,例如通道表面电荷与通道内离子之间的静电作用产生了离子选择性,通道内电化学势的不对称分布产生了离子整流特性,物质传输过程中占据通道产生了阻塞脉冲特性等。纳通道中的这些物质传输特性在传感、分离、能源等领域具有广泛应用,例如通过对纳通道进行功能化修饰可以实现门控离子传输;利用亚纳米尺度的通道可以实现单分子传感;利用通道与传输物质之间的相互作用可以实现离子、分子、纳米粒子的分离;利用纳通道的离子选择性可以在通道内实现电荷分离,将不同形式的能量(如光、热、压力、盐差等)高效转化为电能。纳通道技术是化学、材料科学、纳米技术等多学科的交叉集合,在解决生物、环境、能源等基本问题方面具有良好的前景。该文综述了近10年来与纳通道物质传输理论以及纳通道技术应用相关的前沿研究,梳理了纳通道技术的发展过程,并对其在各个领域的应用进行了总结与展望。  相似文献   
89.
针对热辐射是通道内热流场的重要影响因素之一,采用实验和数值计算方法对倾斜角度为10°、20°和30°的两端开口通道内热流场进行了研究。使用基于大涡模拟(LES)求解浮力驱动N S方程的数值模拟方法求得的模拟结果和实验值吻合较好。通过使用耦合热辐射模型的数值计算结果和忽略热辐射的数值计算结果分别与实验结果进行对比分析的方法发现,在热源一定的条件下,对于倾斜角度在10°~30°之间的通道,热辐射使通道上部高温区域的温度降低,随着倾斜角度的增大,热辐射对通道低端开口上壁面附近的影响作用减弱,而倾斜角度对于热辐射在通道高端开口上壁面附近的作用则影响不大,同时,在通道倾斜角度为30°时,热辐射使通道内高温区域向高端开口方向倾斜,并使通道高端的下部温度升高。整个实验和计算结果可为倾斜通道内热流场的理论研究提供参考依据。  相似文献   
90.
在高温加压的条件下研究了膜式蛇形管平行通道换热器的对流换热特性,试验气体为N2,试验工质的压力为0.5~3MPa.提出了不同冲刷形式、不同压力下的具体换热系数计算方法,同时给出了典型冲刷形式的对流换热关联式及其适用条件.试验研究表明:冲刷形式对换热系数有很大影响;单通道与多通道的换热系数是面积加权平均的关系;在相同的换热条件下,膜式蛇形管平行通道换热器的换热系数高于蛇形管平行通道换热器;相同温度条件下随着压力的升高,换热系数升高,但升幅逐渐减小.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号