首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1597篇
  免费   43篇
  国内免费   592篇
化学   1392篇
力学   1篇
综合类   35篇
数学   1篇
物理学   114篇
综合类   689篇
  2024年   11篇
  2023年   45篇
  2022年   48篇
  2021年   48篇
  2020年   45篇
  2019年   51篇
  2018年   39篇
  2017年   50篇
  2016年   38篇
  2015年   53篇
  2014年   87篇
  2013年   77篇
  2012年   92篇
  2011年   82篇
  2010年   83篇
  2009年   101篇
  2008年   128篇
  2007年   103篇
  2006年   118篇
  2005年   101篇
  2004年   96篇
  2003年   96篇
  2002年   81篇
  2001年   82篇
  2000年   82篇
  1999年   70篇
  1998年   62篇
  1997年   51篇
  1996年   51篇
  1995年   40篇
  1994年   32篇
  1993年   17篇
  1992年   14篇
  1991年   15篇
  1990年   12篇
  1989年   18篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
排序方式: 共有2232条查询结果,搜索用时 15 毫秒
251.
以氯化钴、 对叔丁基磺酰杯[4]芳烃(H4TC4A-SO2)和非对称性3-(1H-四唑-5-基)苯甲酸(H2L)为原料, 通过溶剂热法合成了一个具有四面体配位笼结构的16核化合物[Co16(TC4A-SO2)4(OH)4(L)8]·[(C8H20N)(C4H12N)2(C2H8N)]·solvent(Co16-TC4A-SO2). 采用X射线单晶衍射、 X射线粉末衍射、 热重分析、 红外光谱方法对配合物进行了表征. 将Co16-TC4A-SO2笼簇直接负载到碳纸上(Co16-TC4A-SO2/CP)用作工作电极, 其对析氧反应(OER)展现出较好的催化性能. 在1 mol/L KOH中, Co16-TC4A-SO2/CP在343.8 mV的过电位下达到10.0 mA/cm 2电流密度, Tafel斜率为79.31 mV/dec, 并且在20.0 mA/cm 2电流密度下表现出长达48 h的催化稳定性.  相似文献   
252.
戴建玲  雷文龙  刘强 《化学学报》2019,77(9):911-915
以CuI为铜源, 通过原位形成光催化剂的途径, 实现了室温下可见光驱使铜催化溴二氟乙酸乙酯、溴二氟酰胺等对芳烃及杂芳烃的二氟烷基化反应. 该反应条件温和、原料廉价易得、底物适用范围广、产率较高, 为合成二氟烷基(杂)芳烃化合物提供了一种方法. 机理研究表明, 该反应可能经历了单电子转移的自由基反应历程.  相似文献   
253.
为从充油丁苯橡胶样品中分离提取其中所含8种多环芳烃化合物(PAHs,包括苯并[a]蒽、艹屈、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘及二苯并[a,h]蒽),采用了冷冻研磨、超声浸提法。试验选择了5件样品分别将其粉碎至约2mm~3的颗粒,并取一定量的颗粒样品置于研磨仪中进行冷冻研磨至粉末状态。称取加工成粉末状的样品1.00g,加入正己烷-丙酮(1+1)混合溶液10mL,在40℃超声提取35min。将所得提取液氮吹浓缩至近干,用正己烷1mL溶解残渣,所得溶液经滤膜过滤,滤液供气相色谱-质谱分析。采用VB-17MS毛细管色谱柱,在90~300℃温度区间按程序升温模式进行分离。在质谱分析中,用电子轰击离子源和选择离子监测模式。测得8种PAHs的线性范围均在0.05~5.0mg·L~(-1)之间,检出限(3S/N)在0.01~0.02mg·L~(-1)之间。在样品溶液中加入混合标准溶液进行回收试验,测得回收率在84.5%~106%之间,并从测定值计算其相对标准偏差(n=6)在1.6%~4.9%之间。  相似文献   
254.
剪碎的滤膜经乙腈于35℃超声提取60 min,提取液以12 000r·min~(-1)转速离心10min,采用高效液相色谱法测定上清液中16种多环芳烃的含量。以Agilent Eclipse PAH-C18色谱柱为分离柱,用乙腈和水以不同比例混合的溶液为流动相进行梯度洗脱,用二极管阵列检测器和荧光检测器测定。16种多环芳烃的质量浓度均在0.02~1.00mg·L~(-1)内与其对应的峰面积呈线性关系,检出限(3S/N)为0.05~0.25ng·m~(-3)。以空白滤膜为基体进行加标回收试验,所得回收率为87.8%~103%,回收量的相对标准偏差(n=6)小于5.0%。  相似文献   
255.
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。多环芳烃类物质具有致癌性,难降解性,多由尾气排放,垃圾焚烧产生,危害着人类健康及环境,因此人们不断探索对多环芳烃检测的方法。实验选取多环芳烃中的苊和萘作为检测物质,利用FLS920荧光光谱仪,为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长40 nm,设置扫描的激发波长(λex)范围为:200~370 nm,发射波长(λem)范围为:240~390 nm,对多环芳烃进行荧光扫描获取荧光数据,采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。实验选用的苊和萘均购于阿拉丁试剂官网,配制浓度为10 mg·L-1的一级储备液,再将一级储备液稀释,得到苊和萘浓度为0.5,1,1.5,2,2.5,3,3.5,4和4.5 mg·L-1的二级储备液,并将苊和萘进行混合。在进行光谱分析前需要对苊和萘的光谱进行预处理,采用空白扣除法扣除拉曼散射的影响,并采用集合经验模态分解(EEMD)消除干扰噪声。实验测得苊存在两个波峰,位于λex=298 nm,λem=324/338 nm处,萘存在一个波峰,位于λex=280 nm,λem=322 nm处。选用的PARAFAC算法对组分数的的选择很敏感,因此采用核一致诊断法预估组分数,估计值2和3的核一致值都在60%以上,分别对混合样品进行了2因子和3因子的PARAFAC分解,将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理,并绘制光谱图,与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。同时将PARAFAC得到的混合样本的预测浓度,通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。选择2因子时,各混合样品中苊和萘拟合度为95.7%和96.7%,平均回收率分别为101.8%和98.9%,均方根误差分别为0.0187和0.0316;选择3因子时,各混合样品中苊和萘拟合度为95.3%和95.8%,平均回收率分别为97%和102.5%,均方根误差分别为0.033和0.116,由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。分析实验结果表明,基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析,能够有效的判定混合样品的类别,同时能够成功的预测出混合样品的浓度。  相似文献   
256.
257.
石油类中含有石油烃类物质,石油烃类物质中主要的毒性来源于多环芳烃。不同行业的国内外标准中有多种石油烃类物质的测定方法,主要包括重量法、气相法、红外法、紫外法和荧光法。不同方法各有其优缺点。全面比较了各方法的原理和应用范围,给出今后实际检测和标准修订的建议以供参考。  相似文献   
258.
取干紫菜样品2.00g置于50mL离心管中,加入1.00mg·L-1内标混合溶液100μL,加入4mL水浸润。再加入10mL正己烷均质20s,加入4.0g无水硫酸镁、1.0g氯化钠,涡旋混匀2min,离心,向1mL上清液中加入100mg N-丙基乙二胺(PSA)和100mg无水硫酸镁,涡旋混匀1min,离心。取上清液采用气相色谱-质谱法测定其中16种多环芳烃(PAHs)的含量。16种PAHs的质量浓度在一定范围内与其峰面积与内标峰面积的比值呈线性关系,检出限(3S/N)为0.57~3.8μg·kg-1。按标准加入法进行回收试验,回收率为78.3%~109%,测定值的相对标准偏差(n=6)为1.2%~14%。  相似文献   
259.
建立了加速溶剂萃取/气相色谱-三重四极杆串联质谱(ASE/GC-MS/MS)同时测定纺织品中24种多环芳烃(PAHs)的方法。样品经丙酮加速溶剂萃取,旋蒸浓缩后采用DB-35色谱柱程序升温分离,选择多反应监测模式(MRM)采集,外标法定量。结果表明,在一定浓度范围内多环芳烃的峰面积与质量浓度呈良好的线性关系,相关系数(r~2)均大于0.994,方法检出限为0.000 3~0.03 mg/kg,方法定量下限为0.001~0.10 mg/kg,加标回收率为80.3%~103%,相对标准偏差(RSD)为1.3%~9.2%。该方法灵敏、准确可靠,能满足纺织品中24种多环芳烃的测试要求。  相似文献   
260.
本文综述了近年来芳烃铡链氧化反应在精细有机合成领域的应用进展。着重讨论了用廉价、低污染、选择性氧化芳香族化合物的侧链来制备相应的醇、醛、酮和羧酸等的方法,探讨了芳烃侧链氧化反应的发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号