首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21931篇
  免费   3833篇
  国内免费   2103篇
化学   832篇
晶体学   74篇
力学   633篇
综合类   279篇
数学   5823篇
物理学   6106篇
综合类   14120篇
  2024年   102篇
  2023年   299篇
  2022年   413篇
  2021年   458篇
  2020年   347篇
  2019年   421篇
  2018年   285篇
  2017年   396篇
  2016年   482篇
  2015年   633篇
  2014年   1238篇
  2013年   1148篇
  2012年   1263篇
  2011年   1450篇
  2010年   1470篇
  2009年   1639篇
  2008年   1704篇
  2007年   1496篇
  2006年   1308篇
  2005年   1267篇
  2004年   1197篇
  2003年   1050篇
  2002年   919篇
  2001年   901篇
  2000年   769篇
  1999年   682篇
  1998年   573篇
  1997年   601篇
  1996年   559篇
  1995年   527篇
  1994年   428篇
  1993年   370篇
  1992年   339篇
  1991年   300篇
  1990年   304篇
  1989年   264篇
  1988年   82篇
  1987年   77篇
  1986年   35篇
  1985年   24篇
  1984年   14篇
  1983年   10篇
  1982年   11篇
  1981年   1篇
  1978年   2篇
  1965年   2篇
  1959年   5篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
981.
摘要用原位红外和脉冲实验研究了甲醇在氧化锌表面的吸附行为. FTIR结果表明, 甲醇吸附于氧化锌上易生成甲氧基, 且其生成量随着吸附温度的提高而增加. 进一步的研究结果表明, 甲氧基是由甲醇同氧化锌表面的羟基反应生成的, 将其暴露于水蒸汽中后很快消失. 脉冲实验发现, 氧化锌上脉冲甲醇时产生水, 再脉冲水则产生甲醇. 因此甲醇在氧化锌表面吸附生成甲氧基和水的反应是可逆的.  相似文献   
982.
以静电吸附法使Mg2+修饰于玻碳电极(GCE)上电聚合的2,6-吡啶二甲酸膜(PDC)上, 制得的Mg/PDC/GCE电极, 成为DNA固定及杂交的良好平台. 应用微分脉冲伏安法和电化学阻抗谱对DNA的固定和杂交进行表征. 以电化学阻抗谱免标记法检测目标DNA比以亚甲基蓝为指示剂的微分脉冲伏安法有更高的灵敏度. 固定于电极表面的DNA探针与互补单链DNA杂交后使电负性的[Fe(CN)6]3-/4-的表面电子传递电阻值显著增大, 以此作为检测信号可以高灵敏度地测定目标DNA. 电化学阻抗谱检测转基因植物外源PAT基因片段, 线性范围为1.0×10-9 ~ 1.0×10-5 mol/L, 检测限为3.4×10-10 mol/L.  相似文献   
983.
984.
近年来钢铁行业发展迅速,同时环境污染问题日益突出,烧结烟气污染物主要是硫化物和氮化物等,目前烧结工序强制性配套了脱硫装置,烧结烟气中硫化物能够达到排放要求。由于工业上使用的脱硝装置成本过高及脱硝方式的不成熟[1],大部分烧结工序都没有安装氮氧化物脱除装置。而烧结过程中一般使用焦粉为燃料,如果焦粉中氮含量过高会导致烧结烟气中氮氧化物过高,如果氮氧化物含量超标则会导致烧结停机,对生产运行造成较大影响,因此对焦粉中氮含量的监测尤为重要。  相似文献   
985.
制备了壳聚糖/乙炔黑复合修饰电极(CS-AB/GCE),采用SEM和交流阻抗法对其进行表征。并利用循环伏安法(CV)研究了萘酚异构体(α-N和β-N)在该修饰电极上的电化学行为,对实验条件进行了优化。结果表明,在p H 7.0的PBS缓冲液中,α-N和β-N在该修饰电极上均出现一不可逆氧化峰,且在20~200m V/s范围内,其峰电流与扫速呈线性关系,表明电极过程是受吸附控制的不可逆过程。计算了电极过程的部分动力学参数,优化了差分脉冲伏安法(DPV)的实验参数,并对α-N和β-N进行同时测定,发现二者的微分氧化峰电流值与其浓度在2.5×10-6~1.0×10-4mol/L范围内呈良好的线性关系(rα-N=0.996;rβ-N=0.998)。α-N和β-N的检出限(S/N=3)分别为3.4×10-7mol/L和2.4×10-7mol/L。采用该法对实际水样进行检测,得到α-N和β-N的加标回收率分别为96.7%~105.1%和98.8%~103.9%。  相似文献   
986.
采用预镀铋膜法制得铋膜修饰碳糊电极,当沉积时间为540s得到最优铋膜。采用差分脉冲伏安法(DPV)实现了对痕量Pb2+、Cd2+的同时测定。优化了DPV测定条件,当富集时间为150s、富集电位为-1.25V、HAc-NaAc缓冲底液的pH为4.5时,Pb2+、Cd2+的峰电流最大。在最优的实验条件下,Pb2+和Cd2+的峰电流与其浓度呈良好的线性关系,线性相关系数R分别为0.9912和0.9937,线性范围分别为1~10μmol/L和5~50μmol/L,Pb2+和Cd2+的检出限分别为0.32μmol/L和2.01μmol/L。对实际废水样品进行了加标回收实验,其中Pb2+和Cd2+的回收率分别为98.4%~102.6%和95.4%~104.6%。  相似文献   
987.
基于直立碳纳米管上的大面积金粒子构建了新型的电化学DNA生物传感器,用于急性早幼粒细胞白血病PML/RARα融合基因的检测。首先在直立碳纳米管电极表面溅射金粒子,采用自组装方法将巯基修饰的单链DNA固定到电极上,将氨基修饰的单链DNA和羧基化的CdTe量子点通过酰胺缩合反应生成CdTe修饰的DNA探针,通过与目标DNA的双杂交反应形成三明治结构,利用差分脉冲阳极溶出伏安法检测电极表面捕获的CdTe量子点,从而对DNA进行定量分析。结果表明,电极上Cd2+峰电流与目标DNA浓度(1.0×10-12~1.0×10-8 mol/L)的对数值呈线性关系,线性方程为ipa(μA)=1.626+0.132lgC(mol/L)(R=0.996),检出限为4.0×10-13 mol/L(3σ)。传感器表现出良好的重现性和稳定性。  相似文献   
988.
以罗硝唑(Ronidazole,RNZ)为模板,3-氨丙基三乙氧基硅烷为功能单体,Al(Ⅲ)为路易斯酸掺杂剂,用溶胶-凝胶法制备核壳型磁性分子印迹聚合物,借助磁力作用将其修饰于磁性玻碳电极表面,制得RNZ电化学印迹传感器。以透射电镜、红外光谱、X-射线衍射及电化学方法等对该传感器进行表征,并对影响传感器性能的主要参数进行优化。结果表明,相比基于非掺杂印迹聚合物和非分子印迹聚合物的传感器,铝掺杂印迹传感器对罗硝唑具有更强的结合能力和更高的识别选择性。用差分脉冲溶出伏安法进行定量测定时,RNZ的还原峰电流与其浓度在0.05~50.0μmol/L范围内呈良好线性关系(r=0.997 3),检出限为0.015μmol/L。对牛奶、鸡蛋中RNZ的回收率为88.6%~97.0%,相对标准偏差(RSD)为2.9%~4.6%。  相似文献   
989.
采用差分脉冲伏安(DPV)法,结合密度泛函理论(Density Functional Theory,DFT)计算,研究了抗氧化剂2,6-二叔丁基对甲酚(T501)的电化学行为,考察了工作电极的材料和大小,及电解质溶液的组成和浓度等实验条件。最佳实验条件为直径6mm石墨电极为工作电极,KOH-乙醇溶液(KOH浓度0.15mol/L)为电解质溶液。在优化条件下,基于变压器油T501使用浓度范围内(质量分数0.05%~0.50%),T501的浓度(c)与峰电流(Ip,μA)之间呈现良好的线性关系,建立了一种快速、准确测定变压器油中T501含量的新方法。该方法检测结果与国家标准方法的测定结果没有显著性差异,在保证准确性的前提下,大大提高了变压器油中T501含量测定的效率。检出限为0.032%,加标回收率为99.61%~101.43%。  相似文献   
990.
借助聚吡咯(PPy)的调控,采用脉冲电沉积法在生物医用金属钛表面制备出均匀的纳米HA/PPy/Ag抗菌复合涂层.考察了电解液中Py浓度、Ag~+浓度、钙磷盐浓度等对复合涂层的形貌及成分的影响.探讨了PPy聚合过程形成球形HA-NPs和Ag-NPs的形成机理,并对复合涂层的生物活性、生理稳定性及抗菌性能进行研究.研究结果表明,电解液中Py浓度的高低影响涂层的形貌,Py浓度为0.03 mol/L时有利于复合涂层的沉积.电解液中Ag~+浓度影响涂层的形貌、结晶,电解液中Ag~+浓度为0.3 mmol/L左右比较适合.电解液中Ca~(2+)浓度影响涂层的形貌及结晶,其浓度过高颗粒尺寸增大,Ca~(2+)浓度为5.0 mmol/L左右较适合.复合涂层能够诱导磷灰石的生成,使其沿着(002)晶面出现择优生长,具有较好的生物活性.PPy的加入大大降低了复合涂层中Ca~(2+)和Ag~+的释放速度,提高了复合涂层的生理稳定性.抗菌检测表明复合涂层具有良好的抗菌性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号