首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15316篇
  免费   3020篇
  国内免费   7085篇
化学   10574篇
晶体学   694篇
力学   618篇
综合类   186篇
数学   73篇
物理学   5050篇
综合类   8226篇
  2024年   152篇
  2023年   512篇
  2022年   648篇
  2021年   773篇
  2020年   697篇
  2019年   700篇
  2018年   442篇
  2017年   634篇
  2016年   717篇
  2015年   819篇
  2014年   1645篇
  2013年   1382篇
  2012年   1266篇
  2011年   1396篇
  2010年   1365篇
  2009年   1466篇
  2008年   1529篇
  2007年   1306篇
  2006年   1419篇
  2005年   1386篇
  2004年   1124篇
  2003年   1055篇
  2002年   799篇
  2001年   632篇
  2000年   426篇
  1999年   346篇
  1998年   210篇
  1997年   211篇
  1996年   119篇
  1995年   94篇
  1994年   53篇
  1993年   28篇
  1992年   28篇
  1991年   14篇
  1990年   2篇
  1989年   9篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
据英国《新科学家》2003年8月23日报道:美国麻省查尔斯顿哈佛医学院分子成像研究中心的科研小组正在研究一种独特的技术,即把磁性纳米颗粒注射到人的血液中,用来精确显示有害病毒潜伏在人体的什么部位。新的检测技术采用50纳米直径的磁性颗粒。其中心是氧化铁,外面涂覆一层容易粘结抗体的葡萄糖。在实验室试验阶段,将纳米颗粒加入到病人体液试样中,或注射到病人身上。如果存在活的病毒,它们就会和纳米颗粒上的抗体粘结在一起,形成一大群颗粒。这样,就能用磁共振成像或核磁共振扫描检测到成团的病毒群。涂覆在纳米颗粒上的抗体有识别病毒表面…  相似文献   
62.
63.
由聚丙烯(PP)、聚乙烯(PE)制成的单层或多层微孔膜(PP,PP/PE/PP)具有良好的机械强度,且具备自关闭功能,已被广泛用作液态锂离子电池的隔膜,但PP,PP/PE/PP等微孔膜表面能低,难与塑料电极真正复合为一体,不能直接用于聚合物锂离子电池。因此在PP,PP/PE/PP等微孔膜表面涂敷一层具有黏结性质的过渡薄膜,兼顾两种材料的优点,有助于提高机械强度和将电极粘结起来的黏结力。聚合物复合膜是一种具有3层结构的复合膜,由两外层膜及中间膜组成。正丁醇不溶胀PVDF—HFP,可以丁醇为介质来测量复合膜的吸液率,该数据可作为膜孔率高低的判据,也可用于粗略判断膜电导率高低。  相似文献   
64.
A new kind of polymethyl methacrylate (PMMA)-TiO2 nanocomposite was synthesized through polymerization. The thermal and photic stability of this PMMA TiO2 nanocomposites were investigated. The as prepared samples were characterized by scanning electron microscopy (SEM), UV-Vis spectroscopy, differential thermal analysis (DTA) and the photo-induced weight loss, The results show that the photostability of the PMMA-TiO2 nanocomposite is higher than that of the pure PMMA under UV-light irradiation, The weight loss of the pure PMMA reaches 30 % after 300 h UVirradiation, while the composite only 0.3% under the identical experimental condition. The glass transition temperature (TR) of pure PMMA is only 80℃, while the Tg of the composite reaches 258℃. Compared with pure PMMA, the thermal stability of the composite is greatly enhanced.  相似文献   
65.
Weperformedthehigh-pressureRaman measurementofthethreenanosizedZnOcrystals. Wefoundthesmallerthesize,thehigherthe pressuretoinducethephasetransitionfrom w櫣rzitetorock-saltstructure. High-pressureRamanmeasurementsof nona-shapedZnOcrystalswerepreformed.The…  相似文献   
66.
戴闻 《物理》2005,34(7):543-543
在磁电子学领域,自旋极化输运与分子器件的结合是一个热门研究方向.最近,来自美国康奈尔大学的Pasupathy等,采用纳米加工技术,将单个C60分子吸附在一对Ni电极之间,构成了“铁磁电极-C60量子点”器件.量子点的Kondo效应和铁磁性交换耦合,原本是相互排斥的,在Pasupathy的实验中,两者被首次结合在一个器件中并加以观察.研究结果表明,如果器件的质量能够保证两种效应之间的竞争得到有效控制,  相似文献   
67.
用射频磁控共溅射法制备了Cu体积分数分别为 10 % ,15 % ,2 0 %和 3 0 %的Cu MgF2 复合金属陶瓷薄膜 .用x射线衍射、x射线光电子能谱和变温四引线技术对薄膜的微结构、组分及电导特性进行了测试分析 .微结构分析表明 :制备的Cu MgF2 复合薄膜由fcc Cu晶态纳米微粒镶嵌于主要为非晶态的MgF2 陶瓷基体中构成 ,Cu晶粒的平均晶粒尺寸随组分增加从 11 9nm增至 17 8nm .5 0— 3 0 0K温度范围内的电导测试结果表明 :当Cu体积分数qM 由 15 %增加到 2 0 %时 ,Cu MgF2 复合薄膜的电阻减小了 8个量级 ,得出制备的复合薄膜渗透阈qCM 应处于 15 %和 2 0 %之间 .qM 在 10 %和 15 %之间的薄膜呈介质导电状态 ,而在 2 0 %和 3 0 %之间的薄膜则呈金属导电状态 .从理论上讨论了复合薄膜中杂质电导和本征电导的激活能及其对电导的贡献 ,并讨论了Cu MgF2 复合纳米金属陶瓷薄膜的渗透阈 ,得到了和实验一致的结果  相似文献   
68.
无机纳米粒子作为生物探针在生物分析中的研究进展   总被引:3,自引:0,他引:3  
介绍了无机纳米粒子在生物分析领域的研究进展分别从生物分子与纳米粒子的耦联方式、检测生物分子的纳米金探针、核酸或蛋白质修饰的其它纳米探针以及生物纳米技术的应用前景4个方面对该领域的发展进行了概述。  相似文献   
69.
林文惠  赵亚溥 《中国物理快报》2003,20(11):2070-2073
The dynamic behaviour for nanoscale electrostatic actuators is studied. A two parameter mass-spring model is shown to exhibit a bifurcation from the case excluding an equilibrium point to the case including two equilibrium points as the geometrical dimensions of the device are altered. Stability analysis shows that one is a stable Hopf bifurcation point and the other is an unstable saddle point. In addition, we plot the diagram phases, which have periodic orbits around the Hopf point and a homoclinic orbit passing though the unstable saddle point.  相似文献   
70.
李青 《科技信息》2008,(3):26-27
本文论述了纳米TiO2的催化原理和提高催化性能的主要途径,以及合成纳米TiO2的主要方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号