首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1458篇
  免费   192篇
  国内免费   46篇
化学   9篇
晶体学   2篇
力学   218篇
综合类   6篇
数学   23篇
物理学   363篇
综合类   1075篇
  2024年   27篇
  2023年   71篇
  2022年   78篇
  2021年   87篇
  2020年   65篇
  2019年   61篇
  2018年   34篇
  2017年   54篇
  2016年   53篇
  2015年   55篇
  2014年   107篇
  2013年   104篇
  2012年   101篇
  2011年   89篇
  2010年   81篇
  2009年   86篇
  2008年   81篇
  2007年   58篇
  2006年   40篇
  2005年   32篇
  2004年   41篇
  2003年   30篇
  2002年   32篇
  2001年   40篇
  2000年   21篇
  1999年   29篇
  1998年   18篇
  1997年   23篇
  1996年   22篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   16篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1981年   1篇
排序方式: 共有1696条查询结果,搜索用时 31 毫秒
951.
空腔流动在运输、航天等行业中广泛存在。当高速流体通过空腔时,在腔内产生自激振荡,流场和声场相互耦合产生的气动噪声会引起结构的振动和疲劳破坏,甚至影响结构的使用寿命,因此如何控制和降低腔体气动噪声已成为国内外学者研究的焦点问题。本文在阅读大量文献的基础上,概述了当前腔体气动噪声的研究现状,分析和归纳腔体气动噪声的预测理论、实验研究,数值模拟方法以及噪声控制技术,展望腔体气动噪声研究的未来发展趋势。  相似文献   
952.
针对叶片尾缘穿孔对气动及噪声特性的影响,基于NACA65019叶片,在雷诺数Re=2×105条件下,采用大涡模拟和FW-H方法研究孔型和倾斜角对叶片气动特性、绕流流场和噪声特性的影响规律,并选择降噪效果较好的穿孔模型应用到小型轴流风机上,对穿孔风机进行试验。结果表明:当穿孔倾斜角为30°时,在一定攻角范围内(α≤10°),圆柱型穿孔叶片气动性能最接近原始叶片,并且该穿孔叶片总声压级降低可达9 dB。这是由于穿孔叶片有效抑制了涡量沿叶片表面法向的发展,加速了尾缘涡沿流动方向的能量衰减,且穿孔形成的射流使大尺度的涡破碎形成小尺度的涡,衰减波动力,降低了气动噪声。  相似文献   
953.
基于大涡模拟对有无合成射流控制的三维类车体流场进行仿真,与试验结果对比,验证仿真方法有效.平均场结果表明,当合成射流出口位于顶盖和斜背交界处时,可减弱流动分离,缩小回流区,改变背压,降低阻力.频谱分析显示,当激励动量系数超过1.0×10~(-4)时,斜背表面压力、回流区速度和涡量以及阻力系数功率谱密度对应的峰值频率皆为激励频率.瞬态流场分析结果指出,合成射流与外流之间的交互作用导致了阻力系数曲线中出现周期性改变的波谷和波峰.  相似文献   
954.
两种典型覆冰导线气动力特性及稳定性分析   总被引:6,自引:1,他引:6  
通过节段模型高频天平测力风洞试验,计算了准椭圆形和扇形两种代表性覆冰导线的气动力系数均值、均方根值.基于准定常假设对试验模型的单自由度驰振可能性进行了分析.所得结果为研究类似截面形状覆冰导线的气动特性提供了参考,为进一步计算覆冰导线响应提供了基础数据.  相似文献   
955.
赵萌  刘振  刘印桢  刘美英 《科学技术与工程》2021,21(26):11040-11045
以300 W水平轴风力机叶片为研究对象,设计流线型凸包结构,并应用于风轮模型,结合滑移网格技术,对比研究光滑型与流线凸包型风力发电机的绕流场特性以及气动载荷特性,分析了三维绕流场内速度、压力、流线等的变化规律,以及不同风速下风力机的阻力系数及其功率的时程变化规律,探讨了流线凸包型与光滑型风轮在不同风速下运行时绕流特性的差异。结果表明:流线型凸包对流场有较好的改善结果;当风速增大时有明显的减阻效果,最大减阻率为19.53%,但其波动量增加为1.51%;凸包型风轮输出功率明显高于光滑型风轮,但随着风速增加,功率增加率也逐渐减弱。研究结果对水平轴风力机非定常气动特性研究及应用具有重要意义和价值。  相似文献   
956.
采用数值求解三维RANS和Realizable k-ε湍流模型的方法对排气蜗壳进行计算,探究燃气涡轮末级叶片造成的进气预旋对排气蜗壳气动性能的影响。数值模拟的排气蜗壳静压恢复系数与实验数据吻合良好。文中研究模型的导叶轴向位置固定,通过改变导叶的偏转角获得排气蜗壳测量段不同的进气预旋,进而研究了7种进气预旋和6种进气流量下,支撑板与导叶在两种不同轴向间距下的排气蜗壳气动性能和流场特性。研究结果表明:在进气预旋为0.354 9时,排气涡壳的静压恢复系数达到最大值,这是进出口动压差和总压损失随进气预旋变化的综合结果;超过该进气预旋后,静压恢复系数迅速下降,这是由于此时在支撑板附近产生严重流动分离,总压损失急剧增加所导致;增加支撑板与导叶之间的轴向间距,在预旋小于0.354 9的工况下能够提高排气蜗壳的静压恢复系数,在预旋大于0.233 8的工况下能够减弱尾缘附近涡系结构,从而减小排气蜗壳的总压损失系数,但也会由于支撑板尾缘到出口距离缩短导致流动发展不充分,从而减弱排气蜗壳出口截面的流场均匀性;支撑板与导叶在两种轴向间距下,总压损失系数均随进气流量的增加呈现降低的趋势。研究工作可为燃气涡轮排气蜗壳设计提供参考。  相似文献   
957.
等离子体流动控制作为一种新型的主动流动控制技术,可显著提升飞行器的气动性能。采用纳秒脉冲气动激励进行了某型无人机流动分离控制实验。实验结果表明:纳秒放电和毫秒放电的激励电压几乎相等,但是纳秒放电产生的电流(30A)比毫秒放电电流(0.1A)大得多;纳秒脉冲气动激励在流场中诱导产生近似向上的冲击波,最大诱导速度不超过0.5m/s;纳秒放电的快速温升效应在静止空气中诱导产生冲击波,冲击波的持续时间约为80μs,传播速度约为380m/s;当激励电压大于一定阈值时,纳秒脉冲气动激励使得该型无人机上表面的流动分离得到抑制,临界失速迎角从20°提升至27°,最大升力系数增大11.24%。探究放电频率对流动控制效果的影响规律,结果表明:最佳激励频率是使得施特劳哈尔数为1的频率值;在附面层流动控制方面,纳秒脉冲气动激励较毫秒脉冲气动激励更加有效;纳秒脉冲等离子体流动控制的主要机制是冲击效应,在高速流动控制中,冲击效应比动力效应更加有效。  相似文献   
958.
为进一步研究隧道壁面气动压力特征变化规律,基于RNG k-ε两方程湍流模型与滑移网格技术,数值模拟了高速列车经过双线隧道的全过程;然后,利用现场实测数据对数值方法准确性进行验证;最后,分析了车隧阻塞比对隧道壁面气动压力特征的影响规律。结果表明:随着车隧阻塞比的增大,初始压力波梯度最大值以及正峰值均以指数形式增大,相关系数R2均大于0.998;在列车车尾驶出隧道出口前以及驶出隧道出口后的两个不同阶段,隧道壁面典型气动压力峰值(正峰值、负峰值以及峰峰值)与车隧阻塞比之间满足以e为底的指数函数关系,相关系数R2均大于0.999 5;当列车车尾驶出隧道出口后,随着时间的推移,不同车隧阻塞比下隧道壁面气动压力正负峰值差异性逐渐减小。以距隧道入口500 m测点为例,当车隧阻塞比从0.080 1增大到0.112 2(1.4倍)时,初始压力波梯度最大值增加量为2.92,正峰值增加量为0.30 kPa;列车车尾驶出隧道出口前,气动压力正负峰值增加量分别为0.35与0.60 kPa;列车车尾驶出隧道出口后,气动压力正负峰值增加量分别为0.53与0.46 kPa。  相似文献   
959.
高速列车车头曲面气动噪声的数值预测   总被引:3,自引:1,他引:3  
利用映射法生成高速列车头部流场的六面体贴体网格。采用三维大涡模拟法(LES)计算高速列车流线型头部的瞬态外流场,利用Lighthill-Curle声学比拟理论预测高速列车头部诱发的气动噪声。研究结果表明:气动噪声在很宽的频带内存在,是一种宽频噪声;在低频时,声压幅值较大,随着频率升高,幅值下降;当来流速度一定时,距离气动噪声源越远,总声压级越低,但总声压级的衰减幅度减少;随着列车运行速度增加,诱发的噪声加大,但距离车头曲面越远,总声压级的增幅越小;同一噪声源在不同受声点引起的噪声频谱曲线基本相似,控制列车运行过程中产生的脉动压力,能够减少气动噪声。  相似文献   
960.
离心风机气动声学分析的一个理论模型和计算方法   总被引:2,自引:1,他引:2  
通过求解具有延迟时间,包含三维流速影响的非齐次波动方程,得到了离心叶轮气动导报学的基本方程,对气动声源的分析表明,在离心风机的气动噪声中,起主要影响作用的是偶极子和四极子声源,而流动过程中产生的涡是最主要的四极子源,提出了一种用于分析离心风机气动噪声的声学模型,即忽略蜗壳进、出口声学软边界的影响,将蜗壳简化为一个封闭的声学硬边界柱壳,并推出柱壳腔体内的格林函数,利用该函数对离心风机内部由旋转叶轮产生的气动声场进行了时域求解并给出了理论解方程,在计算出离心风机内部的三维非稳定流场之后,利用本文模型和理论解方程就可求出与该流场相对应的气动声场。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号