首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4457篇
  免费   408篇
  国内免费   1785篇
化学   2881篇
晶体学   156篇
力学   21篇
综合类   29篇
数学   17篇
物理学   503篇
综合类   3043篇
  2024年   92篇
  2023年   258篇
  2022年   299篇
  2021年   312篇
  2020年   279篇
  2019年   197篇
  2018年   147篇
  2017年   174篇
  2016年   151篇
  2015年   231篇
  2014年   378篇
  2013年   385篇
  2012年   308篇
  2011年   340篇
  2010年   274篇
  2009年   350篇
  2008年   246篇
  2007年   339篇
  2006年   287篇
  2005年   231篇
  2004年   196篇
  2003年   207篇
  2002年   148篇
  2001年   165篇
  2000年   127篇
  1999年   55篇
  1998年   84篇
  1997年   46篇
  1996年   52篇
  1995年   45篇
  1994年   46篇
  1993年   35篇
  1992年   20篇
  1991年   38篇
  1990年   37篇
  1989年   43篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1959年   1篇
排序方式: 共有6650条查询结果,搜索用时 0 毫秒
991.
锂硫电池凭借其高的理论能量密度(2600 W·h·kg-1)、丰富廉价的材料来源、且对环境友好等优势,而引起了人们的广泛关注.然而,锂硫电池活性物质导电性差、多硫化物易溶于有机电解液等问题所导致的硫正极倍率性能和循环稳定性差,仍然是困扰锂硫电池发展的挑战性难题.我们设计并以廉价易得的小分子化合物对苯二酚和甲醛为原料,通过缩聚反应、与氧化石墨烯原位复合、高温氮化制备了一类新型氮掺杂的碳纳米带固硫载体材料(NCNB-NG).通过NCNB-NG复合纳米硫进一步得到的碳-硫复合正极材料(S@NCNB-NG)表现出更优异的倍率性能和循环稳定性,这主要得益于该碳质载体独特的微结构以及改善的导电性.  相似文献   
992.
镁二次电池具有安全性高、价格低廉等优点,是一种具有潜在应用前景的高能量密度电池体系.目前,镁二次电池的研究重点之一是寻找合适的电极材料.最近,我们通过水热和热处理相结合的方法成功制备了具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料.研究发现,在石墨烯的三维导电网络片层上,均匀分布了粒径小于100 nm的锡纳米颗粒.将锡纳米颗粒/石墨烯纳米片复合材料作为镁二次电池电极材料,当电流密度为15 mA·g-1和300 mA·g-1时,首次放电容量分别达到了545.4 mAh·g-1和238.8 mAh·g-1,经过150圈后,容量保持率达到了93%,库伦效率为99%,表现出了较高的电化学活性.研究还发现,镁离子嵌入复合材料中形成镁锡合金,当镁离子脱出后,再次形成锡纳米颗粒/石墨烯纳米片复合电极材料,镁离子的脱出和嵌入具有很高的可逆性.这对未来研究设计高性能镁离子电极材料具有十分重要的意义.  相似文献   
993.
质子交换膜燃料电池因其高效、高能量密度、快速启动等独特优势在便携电子设备及汽车动力装置等应用中极具发展潜力。质子交换膜内的传输通道由于对膜质子传导性能有重要影响而受到研究者们的广泛关注。构筑有序结构的质子传输通道,能够获得质子电导率与燃料渗透率、热稳定性、化学稳定性等性能均衡提升的新型质子交换膜材料。本文结合近年来质子传输通道的研究进展,对控制聚合物的相形态从而构筑有序质子传输通道的研究进行了综述,并针对不同相形态所形成的有序通道对膜及燃料电池性能的影响进行了分类与评述,最后对其发展趋势进行了展望。  相似文献   
994.
使用电化学线性扫描伏安(LSV)、循环伏安(CV)和电化学石英晶体微天平(EQCM)方法研究了硫酸和硫酸钠溶液中铅电极表面的反应过程. 伏安曲线和电极表面质量变化结果分析表明,从-1.0 V到-0.4 V正向扫描时,铅在硫酸溶液中生成两种氧化产物,在-0.87 V时生成硫酸铅,在-0.73 V时生成PbO·PbSO4,然后PbO·PbSO4转化成硫酸铅,而铅在硫酸钠中的氧化产物只有硫酸铅. 因此,酸性溶液是PbO·PbSO4形成的必要条件,这进一步揭示了铅酸电池的负极放电机理,也为铅酸电池负极反应过程提供了新的研究方法.  相似文献   
995.
通过溶胶-凝胶和高温固相掺杂反应可控合成了形貌均匀、结晶性好的尖晶石型LiMn1.9Al0.1O3.95F0.05正极材料,探究了Al部分取代Mn、F部分取代O后对结构的影响,测试并比较了电极材料的倍率性能和循环充放电性能. 结果表明,尖晶石型LiMn1.9Al0.1O3.95F0.05和LiMn2O4有同样的晶型,但电极较传统的LiMn2O4电极倍率稳定性有显著提高. 在连续混合(如0.1C、0.5C和1C)充放电150次后,LiMn1.9Al0.1O3.95F0.05电极的容量仍能保持90%以上.  相似文献   
996.
碳酸钾或碳酸钠颗粒作催化剂基底,采用化学气相沉积(CVD)制得类似于石墨烯的层状碳材料,并经原位化学沉积可得层状碳/硫酸铅复合材料. 用X射线衍射(XRD)、热重分析、扫描电镜(SEM)和透射电镜(TEM)分析与测试样品. 结果表明,层状碳为无定型碳层,复合材料为无定型碳层与附着其上的细小硫酸铅颗粒的复合. 上述层状碳和复合材料作为负极添加剂应用于铅酸电池中,测试了电池电化学性能. 结果表明,电池大电流放电比容量和循环寿命均明显提高. 通过电化学交流阻抗谱图(EIS)、充放电曲线和负极失效后的SEM照片证实,加入添加剂能够降低反应阻抗、减小极化及有效抑制极板硫酸盐化.  相似文献   
997.
发展纯电动汽车与混合动力汽车是解决能源危机与环境问题的有效途径,这对新能源材料及储能设备提出了更高的要求. 其中以金属锂作为负极、以空气中的氧气作为正极活性物质组成的锂-空气二次电池具有很高的理论比能量,因在纯电动汽车、混合动力汽车方面有很好的应用前景而受到人们的广泛关注. 根据工作环境及介质条件,目前研究最多的锂-空气电池主要包括有机电解液、有机-水组合电解液及全固态电解质三种类型. 由于锂-空气电池的发展历史较短,目前仍处于起步阶段,在电池的正极、负极、电解液(质)及综合性能等方面均存在诸多的困难与挑战. 本文从作者课题组对有机电解液及组合电解液型锂-空气电池方面的研究出发,旨在向读者简单介绍锂-空气电池的发展历史,研究现状及未来努力的方向.  相似文献   
998.
通过共沉淀法制得类球形锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用非水相共沉法对其进行CoAl2O4包覆得到LNCMO(x). 采用X射线衍射(XRD)、扫描电子显微术(SEM)和透射电子显微术(TEM)测试材料的结构和观察材料形貌. 结果表明,CoAl2O4在材料表面形成8 nm均匀包覆层,未改变主体材料的结构. 电化学性能测试表明,1%(by mass)CoAl2O4包覆量的LiNi1/3Co1/3Mn1/3O2材料(LNCMO(1))高充电电压(3.0 ~ 4.6 V,150 mA·g-1)100周期循环放电容量保持率为93.7%(无包覆LNCMO(0)保持率为74.4%);55 °C高温100周期循环容量保持率为77%(无包覆LNCMO(0)保持率17%). XRD和电感耦合等离子体原子发射光谱(ICP-AES)测试表明,CoAl2O4包覆的LNCMO(x)材料可有效地减缓材料中Mn离子在电解液的溶解,提高材料结构稳定性和热稳定性.  相似文献   
999.
陈军  丁能文  李之峰  张骞  钟盛文 《化学进展》2015,27(9):1291-1301
随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前,广泛使用的无机正极材料普遍存在容量提升有限、生产过程消耗能源大、存在安全隐患和成本高等缺陷。因此,需要开发比容量更高、安全性更好和在自然界中储量更为丰富的绿色能源材料。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文综述了目前国内外已经开展的研究工作,介绍了作为锂离子正极材料的几类主要的有机化合物,包括导电高分子聚合物、含硫化合物、氮氧自由基化合物和含氧共轭化合物等;对比分析了这些化合物的电化学性能、电化学反应机理及其具备的优势和存在的不足;指出了有机化合物作为锂离子正极材料需要解决的问题及今后研究和改进方向。  相似文献   
1000.
锂离子电池健康状态(SOH)的准确性影响电池的安全性和使用寿命.针对锂离子电池SOH估算问题,提出一种基于证据推理(ER)规则的布谷鸟搜索支持向量回归(CS-SVR)的SOH估算模型,并利用NASA Ames研究中心的锂离子电池数据集进行SOH估算试验.该方法以电池放电循环的平均放电电压和平均放电温度为模型输入,利用E...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号