首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49939篇
  免费   5360篇
  国内免费   7989篇
化学   35754篇
晶体学   306篇
力学   2025篇
综合类   274篇
数学   1746篇
物理学   10299篇
综合类   12884篇
  2024年   133篇
  2023年   567篇
  2022年   1182篇
  2021年   1338篇
  2020年   1938篇
  2019年   1575篇
  2018年   1650篇
  2017年   1692篇
  2016年   1857篇
  2015年   1887篇
  2014年   2631篇
  2013年   3855篇
  2012年   2658篇
  2011年   3080篇
  2010年   2399篇
  2009年   2788篇
  2008年   2928篇
  2007年   3393篇
  2006年   3088篇
  2005年   2912篇
  2004年   2654篇
  2003年   2359篇
  2002年   1961篇
  2001年   1577篇
  2000年   1554篇
  1999年   1361篇
  1998年   1078篇
  1997年   1042篇
  1996年   903篇
  1995年   800篇
  1994年   731篇
  1993年   607篇
  1992年   578篇
  1991年   442篇
  1990年   394篇
  1989年   381篇
  1988年   304篇
  1987年   197篇
  1986年   112篇
  1985年   121篇
  1984年   84篇
  1983年   44篇
  1982年   72篇
  1981年   53篇
  1980年   39篇
  1979年   39篇
  1977年   35篇
  1976年   48篇
  1974年   42篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
2.
Two new 1,4-disubstituted 1,2,3-triazoles-4-carboxylates were synthesized via click reaction. Compound 1a was synthesized by the interaction of 6-nitro-tetrazolo[1.5-a]-pyridine with ethyl propynoate at room temperature in the presence of Cu(OAc)2 as a catalyst and THF as solvent. Compound 1b was also synthesized by the same manner except that tert-butyl propionate, instead of ethyl propynoate, was used. The compounds were characterized by IR, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction analysis. Compound 1a(C10H9N5O4) crystallizes in the triclinic system, space group P1 with a = 5.0894(9), b = 8.9834(13), c = 13.089(2) ?, α= 83.041(7), β= 80.256(7), γ=87.296(8)°, V = 585.24(16)?3, Z = 2, Mr = 263.22, crystal size(mm) = 0.37 × 0.20 ×0.18,(I 2σ(I)) = 8557, 2493, 1229, Rint = 0.057. Compound 1b(C12H13N5O4) crystallizes in the monoclinic system, space group P21/c with a = 6.8854(5), b = 21.783(2), c = 9.3986(8) ?,β = 93.239(4)°, V = 1407.4(2)?3, Z = 4, Mr = 291.27, crystal size(mm) = 0.38 × 0.22 × 0.20,(I 2σ(I)) = 11842, 3172, 1866, Rint = 0.047. Antimicrobial assay results showed that the title compounds display excellent activities to different bacterial and fungal strains.  相似文献   
3.
The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di‐CoII derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal‐bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate‐ester bond. Four exchange‐correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate‐limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear CoII center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high‐ and low‐spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.  相似文献   
4.
We explore the influence of two solvents, namely water and the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent–cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent.  相似文献   
5.
6.
7.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   
8.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
9.
This paper is dedicated to studying the following Schrödinger–Poisson system Δ u + V ( x ) u K ( x ) ϕ | u | 3 u = a ( x ) f ( u ) , x 3 , Δ ϕ = K ( x ) | u | 5 , x 3 . Under some different assumptions on functions V(x), K(x), a(x) and f(u), by using the variational approach, we establish the existence of positive ground state solutions.  相似文献   
10.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号