首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2916篇
  免费   291篇
  国内免费   42篇
化学   352篇
晶体学   6篇
力学   192篇
综合类   46篇
数学   172篇
物理学   444篇
无线电   2037篇
  2025年   16篇
  2024年   69篇
  2023年   62篇
  2022年   100篇
  2021年   122篇
  2020年   107篇
  2019年   85篇
  2018年   59篇
  2017年   87篇
  2016年   104篇
  2015年   152篇
  2014年   212篇
  2013年   182篇
  2012年   198篇
  2011年   214篇
  2010年   190篇
  2009年   130篇
  2008年   136篇
  2007年   146篇
  2006年   150篇
  2005年   144篇
  2004年   126篇
  2003年   121篇
  2002年   72篇
  2001年   77篇
  2000年   65篇
  1999年   32篇
  1998年   16篇
  1997年   10篇
  1996年   9篇
  1995年   16篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有3249条查询结果,搜索用时 0 毫秒
101.
    
A monocationic zinc acetate complex of chiral bisamidine-type bidentate ligand (R)- or (S)-Naph-diPIM-dioxo-iPr ( L R or L S ) catalyzes a 1,3-dipolar cycloaddition between tridentate-type imino esters and acrylates in the absence of an external base to give the corresponding multi-substituted prolines with high reactivity, diastero-/enantio-/regio-selectivity, productivity, and broad generality. An anionic acetate ligand of the Lewis acidic Zn complex acts as a Brønsted base to facilitate a smooth intramolecular deprotonation to generate an imino N,O-cis-Zn enolate. The oxygen atoms of two dioxolanes of the L R / L S ligand form a C2 chiral scaffold that coordinates the Zn enolate via a non-bonding n-π* interaction. This view is supported by the lack of enantioselectivity obtained with an sp2N-based Ph-BOX ligand that has no oxygen atom in the reaction site.  相似文献   
102.
    
Biofilms are communities of microorganisms that can colonize biotic and abiotic surfaces and thus play a significant role in the persistence of bacterial infection and resistance to antimicrobial. About 65% and 80% of microbial and chronic infections are associated with biofilm formation, respectively. The increase in infections by multi-resistant bacteria instigates the need for the discovery of novel natural-based drugs that act as inhibitory molecules. The inhibition of diguanylate cyclases (DGCs), the enzyme implicated in the synthesis of the second messenger, cyclic diguanylate (c-di-GMP), involved in the biofilm formation, represents a potential approach for preventing the biofilm development. It has been extensively studied using PleD protein as a model of DGC for in silico studies as virtual screening and as a model for in vitro studies in biofilms formation. This study aimed to search for natural products capable of inhibiting the Caulobacter crescentus enzyme PleD. For this purpose, 224,205 molecules from the natural products ZINC15 database, have been evaluated through molecular docking and molecular dynamic simulation. Our results suggest trans-Aconitic acid (TAA) as a possible starting point for hit-to-lead methodologies to obtain new inhibitors of the PleD protein and hence blocking the biofilm formation.  相似文献   
103.
104.
In this note, some point of views on virtual ages are presented in terms of the discussion paper written by Finkelstein and Cha, which include generalized stochastic order‐based virtual ages, system‐level virtual ages, virtual ages in Weibull distribution and repair degrees with virtual ages. Finally, some possible future researches on virtual ages are described.  相似文献   
105.
106.
    
Non-small cell lung cancer (NSCLC) is a lethal non-immunogenic malignancy and proto-oncogene ROS-1 tyrosine kinase is one of its clinically relevant oncogenic markers. The ROS-1 inhibitor, crizotinib, demonstrated resistance due to the Gly2032Arg mutation. To curtail this resistance, researchers developed lorlatinib against the mutated kinase. In the present study, a receptor-ligand pharmacophore model exploiting the key features of lorlatinib binding with ROS-1 was exploited to identify inhibitors against the wild-type (WT) and the mutant (MT) kinase domain. The developed model was utilized to virtually screen the TimTec flavonoids database and the retrieved drug-like hits were subjected for docking with the WT and MT ROS-1 kinase. A total of 10 flavonoids displayed higher docking scores than lorlatinib. Subsequent molecular dynamics simulations of the acquired flavonoids with WT and MT ROS-1 revealed no steric clashes with the Arg2032 (MT ROS-1). The binding free energy calculations computed via molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) demonstrated one flavonoid (Hit) with better energy than lorlatinib in binding with WT and MT ROS-1. The Hit compound was observed to bind in the ROS-1 selectivity pocket comprised of residues from the β-3 sheet and DFG-motif. The identified Hit from this investigation could act as a potent WT and MT ROS-1 inhibitor.  相似文献   
107.
    
In the present in-silico study, various computational techniques were applied to determine potent compounds against TRAP1 kinase. The pharmacophore hypothesis DHHRR_1 consists of important features required for activity. The 3D QSAR study showed a statistically significant model with R2 = 0.96 and Q2 = 0.57. Leave one out (LOO) cross-validation (R2 CV = 0.58) was used to validate the QSAR model. The molecular docking study showed maximum XP docking scores (−11.265, −10.532, −10.422, −10.827, −10.753 kcal/mol) for potent pyrazole analogs (42, 46, 49, 56, 43), respectively, with significant interactions with amino acid residues (ASP 594, CYS 532, PHE 583, SER 536) against TRAP1 kinase receptors (PDB ID: 5Y3N). Furthermore, the docking results were validated using the 100 ns MD simulations performed for the selected five docked complexes. The selected inhibitors showed relatively higher binding affinities than the TRAP1 inhibitor molecules present in the literature. The ZINC database was used for a virtual screening study that screened ZINC05297837, ZINC05434822, and ZINC72286418, which showed similar binding interactions to those shown by potent ligands. Absorption, distribution, metabolism, and excretion (ADME) analysis showed noticeable results. The results of the study may be helpful for the further development of potent TRAP1 inhibitors  相似文献   
108.
    
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK–ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA.  相似文献   
109.
    
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   
110.
应用虚拟仪器技术,在Lab VIEW7.1开发平台上设计了利用IMAQ Vision for LabVIEW基于NI IMAQ 1405图像采集卡的图像采集系统。该系统对CCD电视、红外热像仪等输出的模拟视频图像具有采集能力,且结构简单,扩展方便,效率高,通用性强,显示了虚拟仪器技术的在信息技术研发中的显著优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号