首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4977篇
  免费   638篇
  国内免费   693篇
化学   4167篇
晶体学   146篇
力学   125篇
综合类   50篇
数学   7篇
物理学   1027篇
无线电   786篇
  2024年   15篇
  2023年   69篇
  2022年   162篇
  2021年   156篇
  2020年   189篇
  2019年   199篇
  2018年   152篇
  2017年   191篇
  2016年   250篇
  2015年   253篇
  2014年   266篇
  2013年   412篇
  2012年   327篇
  2011年   257篇
  2010年   261篇
  2009年   256篇
  2008年   281篇
  2007年   293篇
  2006年   277篇
  2005年   285篇
  2004年   252篇
  2003年   220篇
  2002年   228篇
  2001年   128篇
  2000年   121篇
  1999年   111篇
  1998年   114篇
  1997年   106篇
  1996年   96篇
  1995年   77篇
  1994年   64篇
  1993年   55篇
  1992年   47篇
  1991年   28篇
  1990年   17篇
  1989年   19篇
  1988年   20篇
  1987年   11篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有6308条查询结果,搜索用时 4 毫秒
101.
Textiles coated with silver nanowires (AgNWs) are effective at suppressing radiative heat loss without sacrificing breathability. Many reports present the applicability of AgNWs as IR-reflective wearable textiles, where such studies partially evaluate the parameters for practical usage for large-scale production. In this study, the effect of the two industrial coating methods and the loading value of AgNWs on the performance of AgNWs-coated fabric (AgNWs-CF) is reported. The AgNWs were synthesized by the polyol process and applied onto the surface of cotton fabric using either dip- or spray-coating methods with variable loading levels of AgNWs. X-ray diffraction, scanning electron microscopy (SEM), infrared (IR) reflectance, water vapor permeability (WVP), and electrical resistance properties were characterized. The results report the successful synthesis of AgNWs with a 30 μm length. The results also show that the spray coating method has a better performance for reflecting the IR radiation to the body, which increases with a greater loading level of the AgNWs. The antibacterial results show a good inhibition zone for cotton fabric coated by both methods, where the spray-coated fabric has a better performance overall. The results also show the coated fabric with AgNWs maintains the level of fabric breathability similar to control samples. AgNWs-CFs have potential utility for cold weather protective clothing in which heat dissipation is attenuated, along with applications such as wound dressing materials that provide antibacterial protection.  相似文献   
102.
Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs’ antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel’s properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.  相似文献   
103.
Graphene/noble metal substrates for surface enhanced RAMAN scattering (SERS) possess synergistically improved performance, due to the strong chemical enhancement mechanism accounted to graphene and the electromagnetic mechanism raised from the metal nanoparticles. However, only the effect of noble metal nanoparticles characteristics on the SERS performance was studied so far. In attempts to bring a light to the effect of quality of graphene, in this work, two different graphene oxides were selected, slightly oxidized GOS (20%) with low aspect ratio (1000) and highly oxidized (50%) GOG with high aspect ratio (14,000). GO and precursors for noble metal nanoparticles (NP) simultaneous were reduced, resulting in rGO decorated with AgNPs and AuNPs. The graphene characteristics affected the size, shape, and packing of nanoparticles. The oxygen functionalities actuated as nucleation sites for AgNPs, thus GOG was decorated with higher number and smaller size AgNPs than GOS. Oppositely, AuNPs preferred bare graphene surface, thus GOS was covered with smaller size, densely packed nanoparticles, resulting in the best SERS performance. Fluorescein in concentration of 10−7 M was detected with enhancement factor of 82 × 104. This work demonstrates that selection of graphene is additional tool toward powerful SERS substrates.  相似文献   
104.
The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum. These results confirm that biosynthesized AgNPs can significantly control these plant pathogens.  相似文献   
105.
不同剂型药用抑肽酶纯度的胶束电动毛细管测定   总被引:2,自引:0,他引:2  
姜廷福  陆豪杰  李辰  梁冰  欧庆瑜 《色谱》2002,20(4):353-355
 以十六烷基三甲基溴化铵 (CTAB)为阳离子表面活性剂 ,用胶束电动毛细管 (MECC)分别对抑肽酶粉针剂和抑肽酶注射液进行纯度测定。实验中选择了最佳缓冲液 (含 4mmol/LCTAB的 80mmol/LNa2 HPO4 H3 PO4,pH 7 0 0 ) ,考察了进样量与样品中高浓度盐对分离的影响。并对毛细管区带电泳、MECC和高效液相的分离效果加以比较 ,表明MECC的分离效果最佳。  相似文献   
106.
本文研究了用连体四角锥碘化银为晶核制备类似于四面体碘溴化银微晶和用六方角锥碘化银为晶核制备片状碘溴化银微晶的方法,并对两种不同微晶的结构,形态和性能进行了比较和分析.  相似文献   
107.
Simple two-parameter Hückel and Pitzer equations were used for the calculation of the activity coefficients of aqueous hydrochloric acid at 25°C up to a molality of 2.0 mol-kg–1. The data obtained by Harned and Ehlers(12,13) from galvanic cells without liquid junction were used in the analysis and the parameters obtained were compared to those obtained from all reliable data presented in the literature for HCl at this temperature. A good agreement between the parameters was always observed. The activity coefficients obtained by the new equations were compared to those suggested by Robinson and Stokes,(8) Hamer and Wu,(1) and Pitzer and Mayorga,(9) and good agreement was also found. The data from the most important literature data sets for HCl were also predicted using the new activity coefficient equations, and the magnitude of the resulting errors was close to the precision of the measurements, the errors forming an almost random pattern for all data sets.  相似文献   
108.
The syntheses, structures, and chemotherapeutic activities of Ag(I)‐, Au(I)‐, and Ru(II)‐complexes ligated to a novel N‐heterocyclic carbene ligand, 2‐(4‐nitrophenyl)imidazo[1,5‐a]pyridin‐2‐ylidene ( 1 ), are described. The corresponding complexes, [Ag( 1 )2][PF6], [Au( 1 )2][PF6] ( 3 ), and [Ru( 1 )(p‐cymene)Cl][PF6] ( 4 ), were prepared using convenient transmetallation chemistry and characterized using a range of spectroscopic and analytical techniques. X‐ray crystallography revealed that complexes 2 and 3 adopted linear structures whereas 4 exhibited a prototypical “piano‐stool”‐like geometry; the structural assignments were further supported by DFT calculations. A series of in vitro studies revealed that while the aforementioned Ag(I), Au(I) and Ru(II) complexes exhibited significant cytotoxicities against the human colon adenocarcinoma (HCT 116), lung cancer (A549), and breast cancer (MCF7) cell lines, the Ru derivative was most prominent.  相似文献   
109.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   
110.
Using aqueous extraction of red sanders powder as a reducing agent, silver and copper bimetallic nanoparticles were in situ generated in cotton fabrics. Silver and copper nanoparticles were also generated separately for comparison. The resulted nanocomposite cotton fabrics (NCFs) were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and antibacterial tests. SEM analysis indicated the generation of more number of nanoparticles when bimetallic source solutions were used. Further, the size range of the generated bimetallic nanoparticles was found to be lower than when individual metal nanoparticles were generated in NCFs. XRD analysis confirmed the in situ generation of silver and copper nanoparticles when equimolar bimetallic salt source solutions were utilized. The NCFs with bimetallic nanoparticles exhibited higher antibacterial activity against both Gram-negative and Gram-positive bacteria and hence can be considered for applications as antibacterial bed and dressing materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号