首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3058篇
  免费   676篇
  国内免费   207篇
化学   2802篇
力学   32篇
综合类   7篇
数学   135篇
物理学   253篇
无线电   712篇
  2024年   15篇
  2023年   128篇
  2022年   140篇
  2021年   289篇
  2020年   257篇
  2019年   206篇
  2018年   157篇
  2017年   163篇
  2016年   261篇
  2015年   237篇
  2014年   286篇
  2013年   302篇
  2012年   226篇
  2011年   230篇
  2010年   156篇
  2009年   168篇
  2008年   158篇
  2007年   144篇
  2006年   94篇
  2005年   79篇
  2004年   66篇
  2003年   48篇
  2002年   29篇
  2001年   22篇
  2000年   18篇
  1999年   18篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有3941条查询结果,搜索用时 375 毫秒
151.
Polyvinyl alcohol/polyacrylic acid (PVA/PAA) bilayer hydrogel nanofibres were successfully fabricated by electrospinning and physically crosslinked via heat treatment. The effects of the thermal annealing process on the structure, morphology, swelling, thermal properties and hydrophilicity of electrospun nanofibres were investigated. In addition, these membranes were also used to incorporate doxorubicin and clarithromycin for osteosarcoma treatment, one in each layer. These drugs were used because it is hypothesized in this work that a synergism occurs between both drugs. So, these membranes were analyzed towards their dual-drug release and potential cytotoxicity towards the U2OS human osteosarcoma cell line. Moreover, the water contact angle, disintegration, swelling and weight loss studies confirmed the rapid swelling and improved water stability of the annealed PVA/PAA bilayer nanofibres. The annealed bilayer nanofibres exhibited an increase in the average diameter and degree of crystallinity. In addition, the results revealed that a variation occurred in the degree of hydrophilicity of annealed PVA/PAA bilayer nanofibres. The PAA nanofibres surface exhibited higher hydrophilicity than the PVA nanofibres surface. Drug delivery presented to be as fast rate release for clarithromycin and slow-rate release for doxorubicin, which may be advantageous because both drugs exhibited to be synergetic for certain dosages presenting the combination of the drugs higher than 50% of cell inhibition, while these membranes had higher inhibition values (up to 90%), which was attributed to the PAA but also the drugs. These unique properties are of potential interest in drug delivery applications for dual drug delivery where the tunability of surfaces is desirable.  相似文献   
152.
The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.  相似文献   
153.
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)–poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.  相似文献   
154.
Polysaccharide nanoparticles are promising materials in the wide range of disciplines such as medicine, nutrition, food production, agriculture, material science and others. They excel not only in their non‐toxicity and biodegradability but also in their easy preparation. As well as inorganic particles, a protein corona (PC) around polysaccharide nanoparticles is formed in biofluids. Moreover, it has been considered that the overall response of the organism to nanoparticles presence depends on the PC. This review summarises scientific publications about the structural chemistry of polysaccharide nanoparticles and their impact on theranostic applications. Three strategies of implementation of the PC in theranostics have been discussed: I) Utilisation of the PC in therapy; II) How the composition of the PC is analysed for specific disease markers; III) How the formed PC can interact with the immune system and enhances the immunomodulation or immunoelimination. Thus, the findings from this review can contribute to improve the design of drug delivery systems. However, it is still necessary to elucidate the mechanisms of nano‐bio interactions and discover new connections in nanoscale research.  相似文献   
155.
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.  相似文献   
156.
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described “inulin complex nanoaggregates” (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.  相似文献   
157.
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.  相似文献   
158.
Currently, the treatment of fungal keratitis (FK) infection remains a major clinical challenge, and current investigations, development in the field have widened approaches. The present work was aimed to synthesis a dual role novel carrier system consisting of Ofloxacin (OFL) and Nepafenac (NF) hydrophobic drugs incorporated in Zinc ions (Zn2+) tagged Polyvinyl acetate phthalate (PVAP) grafted Polypyrrole (PPy) carrier (OFL&NF-Zn2+/PVAP-g-PPy) to treat FK infection. The FT-IR, SEM, and dynamic light scattering revealed the carrier chemical structure, spherical shape, and the average particle size of 691.3 ± 1 nm. The carrier’s entrapment of OFL and NF drugs has been observed at 78.23% and 60.03%. The carrier exhibited significant antifungal activity at the concentration of 58 mg mL−1 against Candida albicans which was lower than that of the free ofloxacin. The cell viability results suggested up to 70 μg/mL concentration of OFL&NF-Zn2+/PVAP-g-PPy did not induce any cytotoxicity on cultured ADSC cells at 48 h treatment time. It confirms the fact that the OFL&NF-Zn2+/PVAP-g-PPy carrier showed good biocompatibility and good anti-fungal activity. Thus the carriers provide a significant potential to improve the bioavailability of topically applied drugs to treat fungal eye infection.  相似文献   
159.
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.  相似文献   
160.
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号