首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55061篇
  免费   5189篇
  国内免费   6779篇
化学   31306篇
晶体学   1403篇
力学   1048篇
综合类   274篇
数学   8697篇
物理学   13017篇
无线电   11284篇
  2024年   101篇
  2023年   823篇
  2022年   1010篇
  2021年   1440篇
  2020年   1706篇
  2019年   1753篇
  2018年   1390篇
  2017年   1748篇
  2016年   1813篇
  2015年   1811篇
  2014年   2583篇
  2013年   3928篇
  2012年   2884篇
  2011年   4223篇
  2010年   3396篇
  2009年   3828篇
  2008年   3922篇
  2007年   3790篇
  2006年   3473篇
  2005年   3176篇
  2004年   2681篇
  2003年   2249篇
  2002年   1961篇
  2001年   1519篇
  2000年   1430篇
  1999年   1165篇
  1998年   972篇
  1997年   844篇
  1996年   769篇
  1995年   745篇
  1994年   687篇
  1993年   604篇
  1992年   492篇
  1991年   358篇
  1990年   240篇
  1989年   226篇
  1988年   174篇
  1987年   132篇
  1986年   129篇
  1985年   136篇
  1984年   110篇
  1983年   75篇
  1982年   98篇
  1981年   85篇
  1980年   90篇
  1979年   64篇
  1978年   62篇
  1977年   46篇
  1976年   32篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
3.
Like the lower central series of a nilpotent group, filters generalize the connection between nilpotent groups and graded Lie rings. However, unlike the case with the lower central series, the associated graded Lie ring may share few features with the original group: e.g. the associated Lie ring can be trivial or arbitrarily large. We determine properties of filters such that every isomorphism between groups is induced by an isomorphism between graded Lie rings.  相似文献   
4.
5.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
6.
This paper presents a novel No-Reference Video Quality Assessment (NR-VQA) model that utilizes proposed 3D steerable wavelet transform-based Natural Video Statistics (NVS) features as well as human perceptual features. Additionally, we proposed a novel two-stage regression scheme that significantly improves the overall performance of quality estimation. In the first stage, transform-based NVS and human perceptual features are separately passed through the proposed hybrid regression scheme: Support Vector Regression (SVR) followed by Polynomial curve fitting. The two visual quality scores predicted from the first stage are then used as features for the similar second stage. This predicts the final quality scores of distorted videos by achieving score level fusion. Extensive experiments were conducted using five authentic and four synthetic distortion databases. Experimental results demonstrate that the proposed method outperforms other published state-of-the-art benchmark methods on synthetic distortion databases and is among the top performers on authentic distortion databases. The source code is available at https://github.com/anishVNIT/two-stage-vqa.  相似文献   
7.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
8.
9.
10.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号