首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   489篇
  国内免费   156篇
化学   185篇
晶体学   48篇
力学   10篇
综合类   6篇
数学   20篇
物理学   511篇
无线电   831篇
  2024年   22篇
  2023年   41篇
  2022年   58篇
  2021年   86篇
  2020年   66篇
  2019年   75篇
  2018年   64篇
  2017年   85篇
  2016年   110篇
  2015年   97篇
  2014年   123篇
  2013年   107篇
  2012年   78篇
  2011年   94篇
  2010年   60篇
  2009年   65篇
  2008年   51篇
  2007年   41篇
  2006年   44篇
  2005年   41篇
  2004年   30篇
  2003年   31篇
  2002年   23篇
  2001年   17篇
  2000年   19篇
  1999年   11篇
  1998年   13篇
  1997年   13篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有1611条查询结果,搜索用时 15 毫秒
91.
Graphene sheets have been demonstrated to be the building blocks for various assembly structures, which eventually determine the macroscopic properties of graphene materials. As a new assembly structure, transparent macroporous graphene thin films (MGTFs) are not readily prepared due to the restacking tendency of graphene sheets during processing. Here, an ice crystal‐induced phase separation process is proposed for preparation of transparent MGTFs. The ice crystal‐induced phase separation process exhibits several unique features, including efficient prevention of graphene oxide restacking, easy control on the transparency of the MGTFs, and wide applicability to substrates. It is shown that the MGTFs can be used as porous scaffold with high conductivity for electrochemical deposition of various semiconductors and rare metal nanoparticles such as CdSe, ZnO, and Pt, as well as successive deposition of different materials. Notably, the macroporous structures bestow the MGTFs and the nanoparticle‐decorated MGTFs (i.e., Pt@MGTF and CdSe@MGTF) enhanced performance as electrode for oxygen reduction reaction and photoelectrochemical H2 generation.  相似文献   
92.
The properties of metal oxides with high dielectric constant (k) are being extensively studied for use as gate dielectric alternatives to silicon dioxide (SiO2). Despite their attractive properties, these high‐k dielectrics are usually manufactured using costly vacuum‐based techniques. In that respect, recent research has been focused on the development of alternative deposition methods based on solution‐processable metal oxides. Here, the application of the spray pyrolysis (SP) technique for processing high‐quality hafnium oxide (HfO2) gate dielectrics and their implementation in thin film transistors employing spray‐coated zinc oxide (ZnO) semiconducting channels are reported. The films are studied by means of admittance spectroscopy, atomic force microscopy, X‐ray diffraction, UV–Visible absorption spectroscopy, FTIR, spectroscopic ellipsometry, and field‐effect measurements. Analyses reveal polycrystalline HfO2 layers of monoclinic structure that exhibit wide band gap (≈5.7 eV), low roughness (≈0.8 nm), high dielectric constant (k ≈ 18.8), and high breakdown voltage (≈2.7 MV/cm). Thin film transistors based on HfO2/ZnO stacks exhibit excellent electron transport characteristics with low operating voltages (≈6 V), high on/off current modulation ratio (~107) and electron mobility in excess of 40 cm2 V?1 s?1.  相似文献   
93.
Oxide‐based metal–insulator–metal structures are of special interest for future resistive random‐access memories. In such cells, redox processes on the nanoscale occur during resistive switching, which are initiated by the reversible movement of native donors, such as oxygen vacancies. The formation of these filaments is mainly attributed to an enhanced oxygen diffusion due to Joule heating in an electric field or due to electrical breakdown. Here, the development of a dendrite‐like structure, which is induced by an avalanche discharge between the top electrode and the Ta2O5‐x layer, is presented, which occurs instead of a local breakdown between top and bottom electrode. The dendrite‐like structure evolves primarily at structures with a pronounced interface adsorbate layer. Furthermore, local conductive atomic force microscopy reveals that the entire dendrite region becomes conductive. Via spectromicroscopy it is demonstrated that the subsequent switching is caused by a valence change between Ta4+ and Ta5+, which takes place over the entire former Pt/Ta2O5‐x interface of the dendrite‐like structure.  相似文献   
94.
Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene‐based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high‐quality contact formation, precise alignment of micrometer‐scale patterns, and control of interfacial‐adhesion/local‐resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned‐graphene transfers at desired locations is presented. Using the thermal‐expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a “heating and cooling” process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and superhydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene‐based stretchable sensors, actuators, light‐emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.  相似文献   
95.
96.
97.
98.
High performance radar transparent materials (RTMs) are important materials for the fabrication of radomes, nosecones, etc. of high velocity aerospace vehicles. RTMs with good mechanical performance and temperature capability are required for such applications. Toward this, fabric reinforced nano‐reinforced matrix composites (FRNCs), using reinforcing E‐glass fabric in Cloisite 30B reinforced polyetherimide (PEI) nanocomposite matrix (GNRPEI), was prepared. The properties of GNRPEI were evaluated and compared with E‐glass fabric reinforced PEI composites (GRPEI) with special reference to their radar transparent character for aerospace applications. Tensile and flexural properties along with interlaminar shear strength of GRPEI were observed to be lower than those of GNRPEI. Thermal behavior of both the composites was similar in differential scanning calorimetry and thermal gravimetric analysis. But, in dynamic mechanical analysis, an increase in storage modulus and decrease in loss tangent were observed in GNRPEI compared to GRPEI. The values of dielectric constant and loss tangent of GNRPEI were lesser than those of GRPEI, but no significant difference was observed in the values of transmission and reflection losses for both the composites at 8–12 GHz frequency. FRNCs, based on organoclay reinforced PEI matrix, hold good promise as high performance RTMs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
Flexible transparent thin‐film transistors (TTFTs) have emerged as next‐generation transistors because of their applicability in transparent electronic devices. In particular, the major driving force behind solution‐processed zinc oxide film research is its prospective use in printing for electronics. Since the patterning that prevents current leakage and crosstalk noise is essential to fabricate TTFTs, the need for sophisticated patterning methods is critical. In patterning solution‐processed ZnO thin films, several points require careful consideration. In general, as these thin films have a porous structure, conventional patterning based on photolithography causes loss of film performance. In addition, as controlling the drying process is very subtle and cumbersome, it is difficult to fabricate ZnO semiconductor films with robust fidelity through selective printing or patterning. Therefore, we have developed a simple selective patterning method using a substrate pre‐patterned through bond breakage of poly(methyl methacrylate) (PMMA), as well as a new developing method using a toluene–methanol mixture as a binary solvent mixture.  相似文献   
100.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号