首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2120篇
  免费   453篇
  国内免费   331篇
化学   634篇
晶体学   108篇
力学   58篇
综合类   30篇
数学   16篇
物理学   578篇
无线电   1480篇
  2024年   11篇
  2023年   26篇
  2022年   59篇
  2021年   87篇
  2020年   67篇
  2019年   57篇
  2018年   46篇
  2017年   98篇
  2016年   101篇
  2015年   110篇
  2014年   116篇
  2013年   149篇
  2012年   185篇
  2011年   208篇
  2010年   160篇
  2009年   141篇
  2008年   174篇
  2007年   173篇
  2006年   162篇
  2005年   132篇
  2004年   123篇
  2003年   99篇
  2002年   49篇
  2001年   63篇
  2000年   68篇
  1999年   36篇
  1998年   29篇
  1997年   28篇
  1996年   27篇
  1995年   20篇
  1994年   17篇
  1993年   24篇
  1992年   12篇
  1991年   12篇
  1990年   13篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1975年   2篇
  1974年   1篇
排序方式: 共有2904条查询结果,搜索用时 15 毫秒
991.
Co/Pd epitaxial multilayer films were prepared on Pd(111)fcc underlayers hetero-epitaxially grown on MgO(111)B1 single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed.  相似文献   
992.
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 ℃. By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate.  相似文献   
993.
In this study, we report an efficient and cost‐effective method of fabricating polystyrene (PS) nano‐featured substrates containing nanopore (NPo) and nanopillar (NPi) arrays based on hot embossing using nickel nano‐stamps. We investigate the behavior of adipose‐derived stem cells (ASCs), including adhesion, morphology, proliferation and differentiation, on the replicated PS surfaces. Compared to a flat substrate, NPo‐ and NPi‐featured substrates do not alter the morphology of stem cells. However, both NPo‐ and NPi‐featured substrates induce different integrin expression and lower formation of focal adhesion complexes. In addition, ASCs on the NPo‐featured substrate exhibit greater adipogenic differentiation, while the NPi‐featured substrate induces higher osteogenic differentiation.

  相似文献   

994.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   
995.
本文采用SCC-DFTB方法,研究了石墨烯在Ni金属(111)表面上的生长机理及在台阶面生长情况.结果分析表明,苯环在Ni表面吸附时以界面fcc构型总能最低,结构最为稳定.边缘生长时,附着在衬底表面上的石墨烯层中C原子活性从边缘向中间逐渐降低.在由(111)晶面和(1-11)晶面相交形成的台阶面上,石墨烯片层可连续生长,同时相对衬底表面发生一定偏转,在较大面积时将出现缺陷.改善石墨烯与衬底台阶处的界面不匹配情况将有利于其大面积高质量生长.  相似文献   
996.
运用电致发光(EL)和光致发光(PL)实验,分析了图形化蓝宝石衬底(PSSLEDs)和常规平面蓝宝石衬底(C-LEDs)InGaN/GaN多量子阱发光二极管的光谱特性。对比EL谱,发现PSSLEDs拥有更强的光功率和更窄的半峰宽(FWHM),说明PSSLEDs具有较高的晶体质量。其次,PSSLEDs的EL谱半峰宽随电流增加出现了更快的展宽,而这两种LED样品的PL谱半峰宽随激光功率增加呈现了基本相同的展宽变化,说明在相同电流下,PSSLEDs量子阱中载流子浓度更高,能带填充效应更强。另外,随着电流的增加,PSSLEDs和C-LEDs的峰值波长都发生蓝移,且前者的蓝移程度较小,结合半峰宽的对比分析,说明PSSLEDs量子阱中的极化电场较小。最后,对比了PSSLEDs和C-LEDs的外量子效率随电流的变化,发现PSSLEDs拥有更严重的efficiency droop,说明量子阱中极化电场不是导致efficiency droop的主要原因。  相似文献   
997.
铜基类金刚石膜功能梯度材料作为散热材料的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王静  刘贵昌  李红玲  侯保荣 《物理学报》2012,61(5):58102-058102
随着电子技术、信息产业的发展, Cu在微型散热材料、电子封装材料上应用日益广泛. Cu在应用过程中存在强度低、易氧化、易磨损等缺点. 采用等离子体复合沉积技术, 在铜基体上制备了Ti/TiC/DLC功能梯度材料, 改善铜基体与美金刚石(DLC)膜的结合力, 强化了铜的机械性能. 瞬态热反射法检测结果表明, DLC功能梯度材料不会影响铜基体的散热效果.  相似文献   
998.
采用直流脉冲反应磁控溅射方法生长W掺杂ZnO(WZO)透明导电氧化物薄膜并研究了衬底温度对薄膜微观结构、组分、表面形貌以及光电性能的影响.实验结果表明,WZO薄膜具有良好的(002)晶面择优取向,且适当的衬底温度是制备优质WZO薄膜的关键因素.随着衬底温度升高,薄膜表面粗糙度先增大后减小;衬底温度较高时,薄膜的结构致密,结晶质量好,电子迁移率高.当衬底温度为325℃时,WZO薄膜获得最低电阻率9.25×10-3Ω·cm,方块电阻为56.24Ω/□,迁移率为11.8 cm2 V-1·s-1,其在可见光及近红外区域(400—1500 nm)范围的平均透过率达到85.7%.  相似文献   
999.
发光二极管(LED)中载流子的输运及复合决定了其非均匀的内热源强度及分布,而芯片温度又影响载流子的输运及复合,两者具有强烈的耦合关系。本文利用非等温多物理场耦合模型对以蓝宝石、Si及SiC为衬底的 LED芯片的内量子效率、光谱特性及光电转换效率进行了系统研究。结果表明:以SiC为衬底的LED芯片具有最小的效率下垂效应(Efficiency droop)及最高的光谱强度和光电转换效率。这是因为与其他两种衬底的LED芯片相比,以SiC为衬底的LED芯片具有最好的散热性能,因此非均匀温度场对其载流子输运及复合的影响最小,使得活性区中的载流子浓度显著增强,漏电流明显下降。  相似文献   
1000.
去除铝基板的大功率LED热分析   总被引:2,自引:0,他引:2       下载免费PDF全文
陈建龙  文尚胜  姚日晖  汪峰 《发光学报》2012,33(12):1362-1367
提出一种大功率LED免铝基板封装方式,采用ANSYS有限元热分析软件对传统的铝基板封装和免铝基板封装的LED进行模拟对比分析。模拟结果表明:两种封装结构的LED,其最高温度均出现在LED芯片处;对于单颗功率1 W、3颗功率1 W和单颗功率3 W的器件,由于有效地简化了散热通道、大幅度降低了总热阻,采用免铝基板结构的最高温度分别降低了6.436,9.468,19.309 ℃。传统的铝基板封装即使选用热导率高达200 W/(m·K)的基板,其散热效果依旧略逊于免铝基板封装结构,且随着LED功率的增大,免铝基板的新型封装结构散热优势更加明显。本文的研究为解决大功率LED的散热问题和光色稳定性问题提供了一种新途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号