首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20861篇
  免费   4109篇
  国内免费   2976篇
化学   9585篇
晶体学   176篇
力学   1457篇
综合类   170篇
数学   1618篇
物理学   9205篇
无线电   5735篇
  2024年   92篇
  2023年   420篇
  2022年   523篇
  2021年   798篇
  2020年   1001篇
  2019年   797篇
  2018年   732篇
  2017年   915篇
  2016年   1044篇
  2015年   980篇
  2014年   1384篇
  2013年   1723篇
  2012年   1384篇
  2011年   1453篇
  2010年   1219篇
  2009年   1389篇
  2008年   1390篇
  2007年   1361篇
  2006年   1327篇
  2005年   1063篇
  2004年   932篇
  2003年   854篇
  2002年   705篇
  2001年   633篇
  2000年   572篇
  1999年   505篇
  1998年   430篇
  1997年   344篇
  1996年   293篇
  1995年   257篇
  1994年   222篇
  1993年   169篇
  1992年   138篇
  1991年   143篇
  1990年   95篇
  1989年   95篇
  1988年   82篇
  1987年   65篇
  1986年   60篇
  1985年   59篇
  1984年   43篇
  1983年   24篇
  1982年   37篇
  1981年   35篇
  1980年   32篇
  1979年   31篇
  1978年   16篇
  1977年   23篇
  1976年   12篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The intermolecular interactions of formic acid (HCOOH) with benzene (C6H6) have been investigated using localized molecular orbital energy decomposition analyses (LMO‐EDA) with ab initio MP2 and several double‐hybrid density functionals. The molecular geometries of five HCOOH…C6H6 complexes and corresponding benchmark total interaction energies at the CCSD(T)/CBS level are taken from literature (Zhao et al., J. Chem. Theory Comput. 2009, 5, 2726). According to the results of LMO‐EDA with the MP2 method, the dispersion energies are found to be as important as the electrostatic energies for the total interaction energies of the five HCOOH…C6H6 complexes. Based on LMO‐EDA with the double‐hybrid density functionals of B2PLYP, B2K‐PLYP, B2T‐PLYP, and B2GP‐PLYP computations, two new parameters for the framework of B2PLYP are extrapolated. These two new parameters are tested with other 10 complexes involving C6H6 (Crittenden, J. Phys. Chem. A 2009, 113, 1663), and they perform well on predicting the corresponding total interaction energies. Interestingly, these two new parameters for the framework of B2PLYP also perform well on the noncovalent complexation energies database (NCCE31/05) developed by Truhlar's group (Zhao and Truhlar, J. Phys. Chem. A 2005, 109, 5656). Therefore, these two new parameters appear to be suitable for investigating the noncovalent interactions, and they are denoted as B2N‐PLYP, where N stands for the noncovalent interaction. This study is expected to provide new insight into the derivation of double‐hybrid density functionals for studying the noncovalent interactions. © 2013 Wiley Periodicals, Inc.  相似文献   
952.
The differential virial theorem (DVT) is an explicit relation between the electron density ρ( r ), the external potential, kinetic energy density tensor, and (for interacting electrons) the pair function. The time‐dependent generalization of this relation also involves the paramagnetic current density. We present a detailed unified derivation of all known variants of the DVT starting from a modified equation of motion for the current density. To emphasize the practical significance of the theorem for noninteracting electrons, we cast it in a form best suited for recovering the Kohn–Sham effective potential vs( r ) from a given electron density. The resulting expression contains only ρ( r ), vs( r ), kinetic energy density, and a new orbital‐dependent ingredient containing only occupied Kohn–Sham orbitals. Other possible applications of the theorem are also briefly discussed. © 2012 Wiley Periodicals, Inc.  相似文献   
953.
An accurate single‐sheeted double many‐body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the and dissociation channels involving nitrogen in the ground and first excited states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner–Teller degeneracy of the and states of . Such a work can both be recommended for dynamics studies of the reaction and as building blocks for constructing the double many‐body expansion potential energy surface of larger nitrogen/hydrogen‐containing systems. In turn, a test theoretical study of the reaction has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result. © 2013 Wiley Periodicals, Inc.  相似文献   
954.
955.
Using the three‐level energy optimization procedure combined with a refined version of the least‐change strategy for the orbitals—where an explicit localization is performed at the valence basis level—it is shown how to more efficiently determine a set of local Hartree–Fock orbitals. Further, a core–valence separation of the least‐change occupied orbital space is introduced. Numerical results comparing valence basis localized orbitals and canonical molecular orbitals as starting guesses for the full basis localization are presented. The results show that the localization of the occupied orbitals may be performed at a small computational cost if valence basis localized orbitals are used as a starting guess. For the unoccupied space, about half the number of iterations are required if valence localized orbitals are used as a starting guess compared to a canonical set of unoccupied Hartree–Fock orbitals. Different local minima may be obtained when different starting guesses are used. However, the different minima all correspond to orbitals with approximately the same locality. © 2013 Wiley Periodicals, Inc.  相似文献   
956.
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA‐binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008 , 456, 459] involving two conformational states (“OPEN” and “CLOSED”) of GID1. According to the new perception mechanism, GA acts as a “conformational stabilizer,” rather than the previously speculated “allosteric inducer,” to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism‐based rational design of novel, potent growth regulators that target crops and ornamental plants. © 2013 Wiley Periodicals, Inc.  相似文献   
957.
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X‐ray, NMR, and cryo‐electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson–Boltzmann equation, and the Nernst–Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent–solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein‐ligand bindings and possibility of protein–protein interactions. © 2013 Wiley Periodicals, Inc.  相似文献   
958.
The Transition Rapidly exploring Random Eigenvector Assisted Tree (TRREAT) algorithm is introduced to perform searches along low curvature pathways on a potential energy surface (PES). The method combines local curvature information about the PES with an iterative Rapidly exploring Random Tree algorithm (LaValle, Computer Science Department, Iowa State University, 1998, TR98–11) that quickly searches high‐dimensional spaces for feasible pathways between local minima. Herein, the method is applied to identifying conformational changes of molecular systems using Cartesian coordinates while avoiding a priori definition of collective variables. We analyze the pathway identification problem for alanine dipeptide, cyclohexane and glycine using nonreactive and reactive forcefields. We show how TRREAT‐identified pathways can be used as valuable input guesses for double‐ended methods such as the Nudged Elastic Band when ascertaining transition state energies. This method can be utilized to improve/extend the reaction databases that lie at the core of automatic chemical reaction mechanism generator software currently developed to build kinetic models of chemical reactions. © 2013 Wiley Periodicals, Inc.  相似文献   
959.
960.
In the later stages of drug design projects, accurately predicting relative binding affinities of chemically similar compounds to a biomolecular target is of utmost importance for making decisions based on the ranking of such compounds. So far, the extensive application of binding free energy approaches has been hampered by the complex and time‐consuming setup of such calculations. We introduce the free energy workflow (FEW) tool that facilitates setup and execution of binding free energy calculations with the AMBER suite for multiple ligands. FEW allows performing free energy calculations according to the implicit solvent molecular mechanics (MM‐PB(GB)SA), the linear interaction energy, and the thermodynamic integration approaches. We describe the tool's architecture and functionality and demonstrate in a show case study on Factor Xa inhibitors that the time needed for the preparation and analysis of free energy calculations is considerably reduced with FEW compared to a fully manual procedure. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号