首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2577篇
  免费   704篇
  国内免费   333篇
化学   1924篇
晶体学   9篇
力学   21篇
综合类   3篇
数学   3篇
物理学   259篇
无线电   1395篇
  2024年   63篇
  2023年   408篇
  2022年   113篇
  2021年   434篇
  2020年   482篇
  2019年   239篇
  2018年   209篇
  2017年   168篇
  2016年   233篇
  2015年   185篇
  2014年   181篇
  2013年   144篇
  2012年   97篇
  2011年   80篇
  2010年   44篇
  2009年   71篇
  2008年   77篇
  2007年   78篇
  2006年   86篇
  2005年   54篇
  2004年   39篇
  2003年   46篇
  2002年   21篇
  2001年   16篇
  2000年   12篇
  1999年   7篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有3614条查询结果,搜索用时 15 毫秒
51.
52.
Crystalline silicon(Si)/germanium(Ge) alloy nanotubes and hollow particles are synthesized for the first time through a one‐pot electrolytic process. The morphology of these alloy structures can be easily tailored from nanotubes to hollow particles by varying the overpotential during the electro‐reduction reaction. The continuous solid diffusion governed by the nanoscale Kirkendall effect results in the formation of inner void in the alloy particles. Benefitting from the compositional and structural advantages, these SiGe alloy nanotubes exhibit much enhanced lithium‐storage performance compared with the individual solid Si and Ge nanowires as the anode material for lithium‐ion batteries.  相似文献   
53.
The nanosized rod-like LiMnPO4/C cathode materials have successfully in situ synthesized on the surface of flaky structure MnPO4 · H2O self-sacrificing template by the hydrothermal method. The crystal microstructure, micro shape, and electrochemical parameters of LiMnPO4/C are comprehensively studied by XRD, SEM, TEM, and electrochemical measurement methods. The physical and chemical properties analysis confirms that the vinyl acetate solution (VAc-H2O) with a proper molar ratio is beneficial to generate orthorhombic olivine structure LiMnPO4 with microporous structure and nanorod-shaped morphology. The electrochemical measurement results indicate that LMP-X1-AA sample delivers an initial discharge capacity of 148.1 mAh g−1 at 0.05 C, the capacity retention rate still maintains at 89.2% after 200 cycles. As the discharge rate increases to 1 C, the discharge capacity still remains at 133.4 mAh g−1. The results indicate that the synergistic effect of nanosized rod-like morphology and conductive carbon coating is beneficial to improving the lithium ions diffusivity and electrochemical properties of LiMnPO4 materials.  相似文献   
54.
Layered sodium transition metal oxides of NaTMO2 (TM = 3d transition metal) show unique capability to mix different compositions of Fe to the TM layer, a phenomenon that does not exist in LiTMO2. Here, a novel spontaneous TM layer rippling in the sodium ion battery cathode materials is reported, revealed by in situ X‐ray diffraction, Cs‐corrected scanning transmission electron microscopy, and density functional theory simulation, where the softening and distortion of FeO6 octahedra collectively drives the flat TM planes into rippled ones with inhomogeneous interlayer distance at high voltage. In such a rippling phase, charge and discharge of Na ions take different evolution pathways, resulting in an unusual hysteresis voltage loop. Importantly, upon discharge beyond a certain Na composition, the rippling TM layer will go back to flat, giving the reversibility of such structural evolution in the following cycles.  相似文献   
55.
The lead–acid battery recycling industry is very well established, but the conventional pyrometallurgical processes are far from environmentally benign. Hence, recent developments of lead–acid battery recycling technologies have focused on low-temperature (electro)hydrometallurgical processes, the subject of this review, covering modified electrolytes, improved reaction engineering, better reactor design and control of operating conditions.  相似文献   
56.
Organic cathode materials have attracted extensive attention because of their diverse structures, facile synthesis, and environmental friendliness. However, they often suffer from insufficient cycling stability caused by the dissolution problem, poor rate performance, and low voltages. An in situ electropolymerization method was developed to stabilize and enhance organic cathodes for lithium batteries. 4,4′,4′′-Tris(carbazol-9-yl)-triphenylamine (TCTA) was employed because carbazole groups can be polymerized under an electric field and they may serve as high-voltage redox-active centers. The electropolymerized TCTA electrodes demonstrated excellent electrochemical performance with a high discharge voltage of 3.95 V, ultrafast rate capability of 20 A g−1, and a long cycle life of 5000 cycles. Our findings provide a new strategy to address the dissolution issue and they explore the molecular design of organic electrode materials for use in rechargeable batteries.  相似文献   
57.
A photoinduced flexible Li-CO2 battery with well-designed, hierarchical porous, and free-standing In2S3@CNT/SS (ICS) as a bifunctional photoelectrode to accelerate both the CO2 reduction and evolution reactions (CDRR and CDER) is presented. The photoinduced Li-CO2 battery achieved a record-high discharge voltage of 3.14 V, surpassing the thermodynamic limit of 2.80 V, and an ultra-low charge voltage of 3.20 V, achieving a round trip efficiency of 98.1 %, which is the highest value ever reported (<80 %) so far. These excellent properties can be ascribed to the hierarchical porous and free-standing structure of ICS, as well as the key role of photogenerated electrons and holes during discharging and charging processes. A mechanism is proposed for pre-activating CO2 by reducing In3+ to In+ under light illumination. The mechanism of the bifunctional light-assisted process provides insight into photoinduced Li-CO2 batteries and contributes to resolving the major setbacks of the system.  相似文献   
58.
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.  相似文献   
59.
60.
《中国化学》2018,36(2):157-161
The three‐dimensional nanoflower‐like β‐In2S3 composited with carbon nanotubes (CNTs) has been synthesized by a single mode microwave‐assisted hydrothermal technique. The In2S3 and CNTs nanocomposites (In2S3@CNTs) were investigated as the anode materials of lithium batteries (LIBs) and the electromagnetic wave absorption materials. For LIBs applications, the In2S3@CNTs nanocomposite exhibited excellent cycling stability with a high reversible charge capacity of 575 mA⋅h⋅g–1 after 300 cycles at 0.5 A⋅g–1. In addition, the In2S3@CNTs used as electromagnetic wave absorber displayed a maximum reflection loss of –42.75 dB at 11.96 GHz with a thickness of 1.55 mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号