首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3545篇
  免费   463篇
  国内免费   110篇
化学   303篇
晶体学   4篇
力学   574篇
综合类   35篇
数学   298篇
物理学   398篇
无线电   2506篇
  2024年   16篇
  2023年   74篇
  2022年   84篇
  2021年   164篇
  2020年   169篇
  2019年   96篇
  2018年   83篇
  2017年   171篇
  2016年   153篇
  2015年   189篇
  2014年   304篇
  2013年   288篇
  2012年   269篇
  2011年   241篇
  2010年   132篇
  2009年   148篇
  2008年   180篇
  2007年   207篇
  2006年   183篇
  2005年   154篇
  2004年   153篇
  2003年   124篇
  2002年   88篇
  2001年   73篇
  2000年   75篇
  1999年   66篇
  1998年   58篇
  1997年   45篇
  1996年   37篇
  1995年   24篇
  1994年   18篇
  1993年   15篇
  1992年   6篇
  1991年   13篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有4118条查询结果,搜索用时 15 毫秒
111.
综合性预警探测多功能一体化系统是下一代机载预警雷达的一种必然趋势,它要求天线阵面具备多功能、与平台一体化的特征,实现超宽带、多频段性能,并能在硬件资源上支撑数字智能化的系统体系架构。文中首先分析了机载预警雷达天线阵面的发展趋势和国内外研究现状,继而分析了目前机载预警雷达天线系统的关键技术,阐述了相应的技术实施途径和核心问题,提出部分解决方案。  相似文献   
112.
随着智能电网的建设,电力系统要求发电机组既能快速响应负荷变化,又能保证自身安全经济地运行。发电系统中锅炉蒸汽温度控制过程的动态特性随负荷的大小而变化,并且存在控制量和操作量产生相互干扰等问题。文中提出了一种能够进行负荷跟踪的模型参考自适应控制系统,并利用梯度法推导出可以快速调节误差的参量调整机构,以确保系统的稳定性和抗干扰性。并进行了数据仿真,其仿真结果表明,采用模型参考自适应控制系统能够得到动态性能参数和控制效果,具有一定的理论指导意义和应用前景。  相似文献   
113.
智能电表的推广与使用是一项惠及百姓的民生工程,它大大改善了农村居民用电条件,提高了配电网的自动化水平,对于减少电力能源的消耗具有重大的意义。采用单片机80C51为核心,同时增加电能计量芯片CS5460A、LCD显示器1602、Wifi通信电路、SD存储卡等芯片,来实现电能的计量与显示、无线通信、数据存储等功能。用户可以通过电表上的按键来选择是显示用户当前用电量,还是某一时段用电量。  相似文献   
114.
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermo-responsive surfaces can switch their wettability (from wettable to non-wettable) and adhesion (from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces.  相似文献   
115.
116.
Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.  相似文献   
117.
Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.  相似文献   
118.
A theoretical analysis of the power loss and series resistance of the front side emitter in silicon solar cells is presented. Existing 1D models (infinitely long finger) and 2D models (including the effect of busbars) of emitter series resistance contribution are extended to the case of selective emitters. The general case of different current densities for both emitters in the selective emitter scheme is considered in these extensions. The resulting models depend on the individual sheet resistances and current densities in both emitters and the device's overall grid geometry. The models are corroborated by finite element simulation of the potential in the emitter. An excellent agreement is found between the analytical models, and the simulations for a wide range of sheet resistances typically encountered in silicon solar cells. Grid simulations using the 2D model are applied to solar cells with selective emitters, where the width of the low‐resistive emitter was varied. The simulations demonstrate that the 2D model can explain the absolute change in fill factor observed in these cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
119.
For thin film solar cells, there is a large gap between the record efficiencies and panel power output. It was found that for a “typical industrial” CIGS cell efficiency of 15.5%, the efficiency drops to 11.7% when it is operating under the circumstances of a monolithically integrated solar panel. Part of this gap is due to limited conductivity and transmittance of the front contact. By application of a metallic grid, the conductivity can be improved by over two order of magnitude at a transmittance loss of only a few percent as was shown experimentally. In addition, modeling was used to quantify the impact of such approach on the power output of monolithically integrated solar panels. This model includes optical and resistive losses, as well as related losses caused by the inhomogeneity of the operating voltage over the surface. Both power output and the different types of losses are mapped out for various cell configurations. Optimization of transparent conductive oxide resistance, cell length, finger width, and finger spacing of grids was performed and led to an efficiency improvement from 11.7% to 13.8% when the front contact is upgraded with a metallic grid consisting of 20 µm wide parallel fingers positioned perpendicular to the interconnect. Further optimization for a wide variety of cell and grid configurations show that for a technically more feasible size of 100 µm wide fingers, the calculated efficiency is still 13.5%. Finally, the power output is mapped out for a large number of configurations as to create an overview and insight in the interdependencies of cell configuration and finger dimensions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
In this article, a decoupled two grid finite element method (FEM) is proposed and analyzed for the nonsteady natural convection problem using the coarse grid numerical solutions to decouple the nonlinear coupled terms, and the corresponding optimal error estimates are derived. Compared with the standard Galerkin FEM and the usual two‐grid FEM, our algorithm not only keeps good accuracy but also saves a lot of computational cost. Some numerical examples are provided to verify the performances of the decoupled two‐grid FEM. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled two‐grid FEM for the nonsteady natural convection problem. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2135–2168, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号