首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3863篇
  免费   389篇
  国内免费   746篇
化学   3781篇
晶体学   40篇
力学   55篇
综合类   12篇
物理学   635篇
无线电   475篇
  2024年   11篇
  2023年   33篇
  2022年   63篇
  2021年   93篇
  2020年   108篇
  2019年   104篇
  2018年   114篇
  2017年   141篇
  2016年   150篇
  2015年   162篇
  2014年   193篇
  2013年   384篇
  2012年   264篇
  2011年   283篇
  2010年   229篇
  2009年   235篇
  2008年   244篇
  2007年   239篇
  2006年   218篇
  2005年   218篇
  2004年   183篇
  2003年   173篇
  2002年   129篇
  2001年   107篇
  2000年   103篇
  1999年   78篇
  1998年   82篇
  1997年   86篇
  1996年   62篇
  1995年   45篇
  1994年   53篇
  1993年   34篇
  1992年   27篇
  1991年   13篇
  1990年   24篇
  1989年   19篇
  1988年   17篇
  1987年   33篇
  1986年   38篇
  1985年   61篇
  1984年   26篇
  1983年   24篇
  1982年   37篇
  1981年   30篇
  1980年   19篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
排序方式: 共有4998条查询结果,搜索用时 10 毫秒
51.
Volatile organic compounds (VOCs) are growing pollutants now that cause the serious environmental pollution and threaten human health. The functionalized ordered mesoporous silica (FOMS) has attracted considerable attention in adsorbing VOCs. In this paper, the molecular dynamics simulation was used to simulate the adsorption performance of FOMS on VOCs (acetone, ethyl acetate and toluene). After simulating different pore sizes (2 nm, 3 nm and 4 nm) adsorption performances of ordered mesoporous silica (OMS) on VOCs, OMS with a pore size of 4 nm was selected to further study the influence of functional groups (vinyl, methyl, and phenyl). The following law was obtained: the saturated adsorption capacities of vinyl-functionalized OMS (V-FOMS) to acetone, ethyl acetate and toluene were 3.045 mmol.g?1, 2.568 mmol.g?1 and 1.976 mmol.g?1 respectively; the saturated adsorption capacities of methyl-functionalized OMS (M-FOMS) to acetone, ethyl acetate and toluene were 2.798 mmol.g?1, 2.312 mmol.g?1 and 1.698 mmol.g?1 respectively; the saturated adsorption capacities of phenyl-functionalized OMS (P-FOMS) to acetone, ethyl acetate and toluene were 2.124 mmol.g?1, 1.941 mmol.g?1 and 1.539 mmol.g?1 respectively. These results show that the adsorption ability of FOMS for different adsorbates follows the sequence of acetone > ethyl acetate > toluene. Furthermore, the interaction between functional groups (vinyl, methyl and phenyl) in FOMS and VOCs was explored. It is found that the interaction between different functional groups and adsorbates is different (interaction energy effect). This interaction energy effect promotes FOMS to better adsorb VOCs. This work would provide fundamental understanding and guidance for the development of novel adsorption materials for the adsorption of VOCs.  相似文献   
52.
《Mendeleev Communications》2022,32(2):234-237
Starting from the functional cyclotriphosphazene, polysiloxane and nano-SiO2 precursors, three new hybrid nanocomposites with reinforced mechanical properties were prepared. Young’s modulus values for all the composite samples are similar in the range of 7–11 MPa, stress at fracture increases with the nano-SiO2 content increase in the material and reaches a maximum value of 36 MPa for the composite with 20% nano-SiO2. The nanocomposites investigated are elastic and demonstrate the ability to be deformed without failure up to 54% strain.  相似文献   
53.
The direct application of corrosion inhibitors on metal surfaces is potentially dangerous for the environment and the restoration operators, thus new conservation strategies are mandatory. In this study, two copper corrosion inhibitors, 1H-benzotriazole (BTA) and 5-phenyl-1H-tetrazole (PT), are encapsulated in a silica nanocontainer, for future application in smart coatings, with the aim to reduce the amount of chemicals used in treatments, their dispersion in the environment and the direct exposure of the operators to these chemicals. In particular, composite silica nanocapsules, containing the corrosion inhibitors, are prepared via one-step synthesis, based on mini-emulsion polymerisation processes.The morphology, structure, and texture of these loaded silica nanocontainers are characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 physisorption (BET/BJH). Micro-Raman spectroscopy (RS) is performed to characterise the composition. UV–visible spectroscopy and thermal analysis (TG/DSC) are performed for the loading and encapsulation efficiency (L%, EE%) study.Synthesised nanocapsules show a core-shell structure and, when loaded with the inhibitors, have size ranging from about 130 to 170 nm and a BET surface area of the order of 800 m2/g. The EE% is maximum in the case of BTA and decreases to ~52% in the case of PT.  相似文献   
54.
In this paper, we studied commercially available precipitated rice husk silica (RHS) with conventional precipitated silica, which has nearly the same surface area, and replaced part of the carbon black with RHS and conventional silica in a basic tread formulation. All formulations were mixed with the same amount of filler during the study. Silica was used at 15, 30 and 50 phr loading, and part of the carbon black was replaced by silica. Compound curing characteristics, physical properties, rebound resilience, heat generation, abrasion loss, dynamic properties and morphology were analyzed. The results indicated that RHS demonstrated compound properties comparable to those of conventional silica. As part of the carbon black was replaced with conventional silica, a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta were observed with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA analysis. We found the same trend when replacing part of the carbon black with RHS, such as a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA. This sustainable material could be used to replace conventional silica in tire compounding, as well as to replace a portion of carbon black with RHS for improved heat build-up, rolling resistance, and abrasion loss.  相似文献   
55.
Obtaining superhydrophobic surfaces for their application in electronics and flexible wearable devices remains a significant challenge. Most previously reported methods for obtaining superhydrophobic surfaces involve complex and expensive preparation techniques and thus cannot be used for practical applications. Ion-beam irradiation is a simple and promising method for fabricating superhydrophobic nanostructures on large areas at a low cost. Ion-beam irradiation using argon and oxygen gases was used to prepare silica nanorod structures on glass substrates. This study is not just a modification of the surface of nanoparticles, but a change in nanoparticle shape. The nanorods were subsequently treated with perfluorooctyltriethoxysilane to obtain superhydrophobicity. The surface of the silica nanorods exhibited a static water contact angle of 153°, indicating superhydrophobicity. The combination of rough structures of silica nanorods and low surface energy resulted in superhydrophobicity. The surface properties were evaluated in detail using Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The proposed method is facile, inexpensive, and can be used for the large-scale production of nanorod structures for potential industrial applications.  相似文献   
56.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   
57.
The resolution of the diastereoisomers of norpristane, pristane, and phytane was studied as a function of the column internal diameter and/or the residence time of the compounds in the column. Increasing the residence time in the column by operating the column at a lower temperature program rate enhances the resolution more than reducing the internal diameter of the column. Practical experience with ultra narrow bore columns is also presented.  相似文献   
58.
A method is described for surface deactivation and modification of fused silica capillary columns with a cyanopropyl-containing reagent. The deactivation procedure involved a dehydrocondensation reaction between a bis(cyanopropyl)methylhydropolysiloxane reagent and surface silanol groups at an optimum temperature of only 250°C. Actual critical surface tension measurements were made using the capillary rise method. Excellent deactivation for acidic and basic compounds at the low ng level, and wettability for nonpolar and polar polysiloxane stationary phases were obtained. A procedure was developed to remove acidic impurities that are present in polar stationary phases.  相似文献   
59.
Dissolution and reprecipitation of silica during aging in water improve the wet gels mechanical stiffness and strength, and hence shrinkage during supercritical drying is reduced. We have investigated how the strength and stiffness of a 2-step TEOS acid-base catalyzed wet gel can be improved by aging in a solution of water/ethanol (20–40 vol%) at various temperatures (20–70°C) and time (2 h and 24 h) and how this influences the aerogels properties. The linear shrinkage during supercritical drying was reduced from 29% to 2% by introducing the aging step in the 20 vol% water/ethanol solution for 24 h at 60°C.We have also in previous works introduced the idea of preparing ambient pressure dried silica aerogels by increasing the wet gels stiffness by aging in a TEOS solution until shrinkage during drying is almost eliminated. The gels aged in the water/ethanol solutions were further aged in a TEOS/ethanol solution and the effect of the increasing water content in the pore liquid was studied. A xerogel density of 0.20 g/cm3 is reported for gels with a shear modulus (G) of 30 MPa.  相似文献   
60.
Oligomerization of glycine (gly) and diglycine (gly2) on silica and alumina was observed in experiments simulating wetting-drying cycles at 80°C. Glycine produces less than 1% total yield of gly2 and diketopiperazine (DKP) after one week. In experiments starting from gly2, more than 10% DKP is formed. Formation of higher oligomers (gly3–gly6) proceeded as well, with 3.8% and 5.1% total yields on silica and alumina surfaces respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号